Title	Odour control \＆legislation for the large offensive smell facilities in Hong Kong
Author（s）	Kwan，Yiu－keung，John．；關耀強．
Citation	
Issued Date	1996
URL	http：／hdI．handle．net／10722／36808
Rights	The author retains all proprietary rights，（such as patent rights） and the right to use in future works．

The University of Hong Kong

Master of Science
in
Environmental Management

Dissertation Title: Odour Control \& Legislation for the Large Offensive Smell Facilities in Hong Kong

Student:	Mr. Kwan Yiu-keung, John
Student No:	$\mathbf{9 4 9 2 1 5 9}$
Adviser:	Dr. D.Y.C. Leung
Date:	September 1996

DISCLOSURE STATEMENT

This dissertation is submitted in partial fulfilment of the requirements for the Master of Science Degree in Environmental Management from The University of Hong Kong.

This dissertation represents the author's own work conducted for the purposes of this programme. All significant data or analysis used in this dissertation which draws extensively on other sources -- including work the author has carried-out for purposes other than for this programme -has clearly been identified as such.

Signed:

Printed Name:

ACKNOWLEDGMENT

I gratefully acknowledge the inspiration given by the many authors from whose publications materials provide for me with the sources of reference.

I am also deeply indebted to the many interviewees who had offered me their invaluable views and advice on the topic through the many encounters and conservation.

In particular, I wish to express my most sincere and profound gratitude to my adviser, Dr. D.Y.C. Leung, to whom I owe an inestimable debt for his inspirations, insights and perspicacity comments given to my preparation of this report.

CONTENT

Abstract 1

1. Introduction 2
2. Background 4
2.1 Odour and its Measurement 4
2.11 Human Olfactory System 7
2.12 Odour Threshold 9
2.13 Measurement of Odour 10
2.14 Problem of Odour Nuisance 12
2.15 The effect of odour on health 14
2.2 Principle of Deodourization 15
2.21 Adsorption: Activated Carbon 18
2.22 Absorption: Scrubber 23
2.23 Incineration 25
2.24 Masking 28
2.25 Ozone 29
2.26 Biofiltration 31
3. Objective \& Methodology 37
4. A Review of Odour Problems 37
4.1 Odour Problems and its Control in Overseas Countries 37
4.2 Odour Problems and its Control in Hong Kong 49
4.2.1 Abattoir 52
4.2.2 Sewage Works 52
4.2.3 Refuse Transfer Stations 54
4.2.4 Refuse Collection Point 56
4.2.5 Composting Plant 57
5. Legal Aspects 58
5.1 The related legislation and regulations in Hong Kong 58
5.2 The qualitative approach policy 60
5.3 The quantitative approach policy 63
5.4 Requirements to implement the quantitative approach policy 66
6. . Kecummendations 68
7 Conclusions 70
7. References 74
8. Appendices 80

Abstract

The objectives of the work are to identify the odour problem caused by the large offensive smell facilities such as sewage treatment plants, refuse transfer stations, refuse collection points, abattoirs, composing plants and pumping stations; and to review the development of deodourization measures and legislation in the overseas countries. This is also to compare with the ones in Hong Kong.

The approach to the problem is by conducting a survey to collect the data. Questionnaires have been sent to 59 relevant organisations and authorities of overseas countries, and the relevant departments in Hong Kong to gather information on odour control and legislation ber them. The main themes of the questionnaire were to: (i) identify the odour problem and the seriousness in different facilities; (ii) find out what kind of measures are being used for odour control; and (iii) obtain information on the legislation related to the control of odour.

In summary of the study, it was learnt that there are various kind of air pollution control equipment (e.g. activated carbon, scrubber, biofilter, and ozone etc.) used for the treatment of odorous gases generated from the offensive smell facilities. The most commonly used equipment in Hong Kong are activated carbon and scrubbers. However, biofilter and ozone are increasingly accepted by many overseas countries. Although biofilter has many advantages such as the low running cost and high odour removal efficiency, more work is still required to reduce the large surface of the biofilter especially for accommodation in the plants of Hong Kong.

1. Introduction

There are many large offensive smell facilities, such as sewage treatment plants, refuse transfer stations, refuse collection points, abattoirs, composing plants and pumping stations in Hong Kong, which generate odorous gases and cause nuisance to the public. It was shown in \mathfrak{t} = Environmental Hong Kong 1991 that complaining about odour problems constituted over 28% of the total air pollution complaint cases in Hong Kong in 1991. Although not all of these complaints were raised from the large offensive smell facilities, they will highly affect the neighbouring residents as they are proximate to each others.

These facilities are usually located in the densely populated areas. For instance the Kennedy Town Abattoir and the Kwai Chung Abattoir are only a few hundred meters apart from the residential areas. It is not an adequate separation, therefore many complaints against odour nuisance were lodged by the public. The odour problem has been long existing and some measures had been adopted to abate the odour nuisance. Scrubber had been fixed to the Kennedy Town Abattoir. Another odour control equipment such as ozonator has been proposed to install in the new abattoir in Sheung Shui.

Although there are deodourization techniques in literature such as ozonation and biofilter, it is not widely used in Hong Kong. There are many kinds of odour control equipment which are claimed to have high odour removal efficiency, however there has not a complete solution to get rid of the annoyance to the public. Once the
offensive facility is there and the odorous nuisance is established, it is not easy to solve the problem by simply retrofit the facilities with the air pollution control equipment. It is because the short distance between the offensive smell facility and the residential area and the increasing environmental awareness of the community. In addition, the complexity of odours' constituents makes it difficult to be treated by air pollhuon control equipment. Therefore a well planned land uses and proper designed odour control system is recommended. And in the following hapters, a probe into the nature of the odour is needed.

The odour problem can be solved in the planning stage. However, many existing problems can only be solved by retrospective measures. The method for determining or establishing odour nuisance is very controversial. It is because the scent of odour by human beings is subjective. This study shows that the odour problems can be tackled by either qualitative approach or quantitative approach. The qualitative one requires less manpower and straight forward method and without any limitation set by the authority but it is very subjective in performing the assessment of nuisance. Hence in the European countries, it is trying to adopt the quantitative approach policy in abating the odour nuisance. Although it requires sophisticated instrument, accredited laboratory to give reliable measurement of odorous gas, it is still worth for giving a clear picture for the authority and the industries to follow when designing the air pollution standard. This study will also examine the advantages and disavantages of these two approaches and its feasibility of applying in Hong Kong.

2. Background:

2.1 Odour and its Measurement

In order to have a general idea of the odorous gases, it is to investigate the most commonly known and prevalent odorous gas hydrogen sulfide, $\mathrm{H}_{2} \mathrm{~S}$. This gas normally associated with domestic wastewater collection, treatment systems and other offensive smell facilities. It has a characteristic rotten egg odour, and toxic.

The conditior. leading to $\mathrm{H}_{2} \mathrm{~S}$ formation generally favour the production of other malodours organic compounds. Investigations of the conditions favouring $\mathrm{H}_{2} \mathrm{~S}$ formation can also help to quantify the potential for odour generation from other compounds. Thus, solving $\mathrm{H}_{2} \mathrm{~S}$ odour problems can often solve other odour problems as well.

Many of the substances result from the anaerobic decomposition of organic matter containing sulfur and nitrogen(USEPA, 1985). Inorganic gases produced from decomposition of domestic wastewater commonly include hydrogen sulfide, ammonia, carbon dioxide and methane, of which only hydrogen sulfide and ammonia are malodours. Odour-producing substances include organic vapours such as indoles; skatoles, mercaptans and nitrogen-bearing organics, can also be found in other offensive smell facilities.

Many of the odours detected in wastewater collection and treatment systems result from the presence of sulfur-bearing compounds. A list of common malodours sulfur-bearing compounds is shown in Table 2-1. The lower the molecular weight of a compound, the higher the volatility and potential for emission to the atmosphere.

Substances of large molecular weight are usually not perceptible and are neither volatile nor soluble. Mercaptans are commonly found in wastewater and are analogous to alcohol with a substitution of sulfur for oxygen in the OH radical. Mercaptans are a reduce .urm of organic sulfur compounds. They are malodorous and can contribute to odour problems due to their extremely low threshold odour concentration as shown in the table.

Substance		Characteristic Odor	Odor Tolecular Weignt
			pormula

Table 2.1 Odorous Sulfur Compounds in Wastewater
(Source: USEPA 1985)

Toxicity and Odorous of Hydrogen Sulfide

Besides the characteristic of rotten egg smell even at low concentration, $\mathrm{H}_{2} \mathrm{~S}$ is an acutely toxic gas which is heavier than air. But as the levels of $\mathrm{H}_{2} \mathrm{~S}$ increase, workers are generally unaware of its presence. The plysiological effects of $\mathrm{H}_{2} \mathrm{~S}$ are summarized in Fig 2.1. Very low concentrations of this gas can cause serious health hazards and concentrations of 300 ppm (by volume in air) can cause death.

Fig. 2.1 Hydrogen sulfide toxicity spectrum

There are several ways to express the concentration limits of toxic gases that a person can be exposed (USEPA, 1985):

1. Eight-Hour Time Weighted Average (TWWA): The maximum average concentration to which a worker can be exposed for 8 hours a day, 40 hours a week. This is normally called the threshold limit value (TLV).
2. Ceiling Value: A limit generally not to be exceeded.
3. Acceptable Maximum Peak ' concentration limit which is not acceptable for specified maximum duration.

2.11 Human Olfactory System

The odour reception system of human is more sensitive in detecting odours than any known instrumental technique (Punter, 1986), and is capable of discriminating among many thousands of odorous substances. The response to an odour is instantaneous, disappearing immediately when the odorant is removed.

The mechanism of the odour reception occurs when air carrying the odorous material travels through the nostrils, along the air passages up into the olfactory cleft (Fig 2.2) where the odour receptors are situated. The olfactory cells, are long and narrow with their length perpendicular to the plane of the nasal cavity and attached to each with olfactory hairs, or flagella, which are believed to be affected by odorous materials, setting off a chain of events which results in the odour being perceived.. The flagella are kept moist normally but when we have a cold or catarrh or due to
changes in humidity or temperature, they are incapacitated and our sense of smell impaired.

Fig. 2.2 The Human Olfactory System
The olfactory nerves will become fatigue if a person continually inhales odorous air, this is due to the adaptation of the nervous responses to the stimuli. The more concentration the odour, the more quickly fatigue becomes complete, resulting in temporary amnosia.

Moncrieff identified some pre-requisites necessary for the perception of an odour. Firstly, the substance to be odorous must have a measure of volatility, so that it constantly looses molecule. The substance which are non-volatile in room temperature, such as metal, glass are non-odorous. Secondly, it must be capable of being adsorbed, that is the molecules be attached to the surface of the olfactory receptors. Mercaptans and amines are readily adsorbed hence tend to odorous however, the gases methane, carbon monoxide are not therefore they are non-odorous. Incapable of detecting odour can be detrimental, as the human nose is unable to provide a warning of the present of the toxic gas.

2.12 Odour Threshold

The threshold of odour is the minimum quantity of energy required to cause stimulation in a receptor system (Summer, 1971). Each quality of odour has its own specific threshold. The odour threshold is the level at which the odour panel response of 50% is obtained. Odour is measured in odour unit. Odour unit is not expressed as concentrations (ppm , or $\mathrm{mg} / \mathrm{m}^{3}$) but as having an odour intensity level which is defined in ASTM method of test D1292. For example the odour unit is the value representing the number of times the odour needed to be diluted to $1 / 32$ nd of its concentration $\left(32=2^{5}\right)$ to reach its threshold, then the odour int ${ }^{-m \text { sity }}$ index OIL equals to 5 .

There is no direct relationship between the odour concentration and the odour annoyance. Also, there is a great difference between the detection and recognition thresholds (Hesketh, 1989). For example in low concentration of hydrogen sulfide, say at threshold level of 0.00047 ppm , a sensitive nose can detect the presence of an odour but does not recognize it. It may be described as smelling like chocolate. Appendix 1 lists typical odour recognition thresholds and odour descriptions at the recognition levels.

2.13 Measurement of Odour

The human sense of smell, cannot be matched by any presently known instruments as far as sensitivity to most malodours is concerned. Nor can instruments measure the degree of unpleasantness of an individual compound. Thu refore people describe the degree of unpleasantness in a very subjective way and is difficult to compare. The measurement of odour is by olfactometer anc' ndour panel. (EPA Victoria)

The odour panel

The basic principle of this method of odour assessment is that a sample of odorous gas is diluted with odour-free air in various concentrations until the number of dilutions required for the odour to be just perceptible by half the members of an odour panel is determined. The sample is diluted by either the static or dynamic dilution method. The odour assessment by an individual is a purely subjective matter. In order to achieve the necessary objective it is usual to employ an odour panel of four to six persons.

Static Dilution

In static dilution, the panel enter a room with introduction of odour and dilution of concentration. This method is the least subject to error but is very slow, because purging is needed every time prior to introduce a diluted odour into the room.

Dynamic Dilution

Controlled flows of sample gas and odour-free air are combined to achieve dynamic dilution of the odour. Numerous types of apparatus have been developed and tested and vary from those which introduce the diluted malodorant to an individual, to that which introduces it to several members of a panel simultaneously. Several olfactometers have been found to give inaccurate and inconsistent results due to factors such as low flow rate allowing dilution at the panelist's nose and the use of materials that allow adsorption losses.

In order to overcome the various shortcomings of olfactometers on the market, some portable olfactometer has been developed, which is known as Dynamic Dilution Apparatus. The instrument, developed by Warren Spring Laboratory (Bedborough, 1979), is capable of measuring dilutions from 25-250,000.

In the process of samples collection a large Tedlar bag, made of polyvinyl chloride film and having a low adsorption tendency, is used. It is then placed in a rigid container in which vacuum is created and causing the inner bag to inflate and the sample is collected through a sample line of PTEE materials. Hot wet samples may cause condensation in the bag, therefore pre-filling the bag with clean dry air is sometimes necessary.

The odour level is defined as the ratio of the volume which the sample would occupy when diluted to the odour threshold to the volume of the sample. The odour level is expressed in odour unit and is analogous to concentration (EPA, Victoria). Sampling apparatus, dilution system and the testing panel are shown in the Appendix 2.

2.14 Problem of Odour Nuisance

Nuisance is a word used casually in many ways, but in the legal sense it has a definite meanings i.e. infringement of the right to use and enjoy land by a party against another party (Punter, 1986). However, nuisance by odour or annoyance cannot be easily quantified.

In the section of the Technical Memorandum of Air Pollution Control Ordinance, nuisance can be assessed under some criteria or guidelines. When determining whether the emission of any air pollutant from the source has cause a
nuisance, the authority is based on the duration, frequency of emission, the relative location etc. The details on the policy of the odour nuisance will be discussed in later chapter.

Experiment has been done (Punter, 1986) on the relationship between the odour concentration and odour annoyance. The results indicated that there was no direct relationship between concentration of an odour and the amount of odour annoyance it caused. However, the human nose responding to the perceived odour intensity can be expressed by Weber-Fechner Law (Bedborought, 1979).

Odour Complaints

Complaints against odour nuisance seems increased steadily (Environment Hong Kong, 1992). There are many reasons for this, for instance, housing is being built much nearer to the plant's boundary than ever before. And above all, public expectations of the environment of the people in Hong Kong have changed when comparing with the one in a decade or even a few years before.

In handling odour nuisance the authority tends to be in an inactive way. They are seldomly controlled in a preventive aspects. The odour problems tend to follow a common pattern: (1) complaints begin, increase in frequency and the local authority becomes involved; (2) environmental officer makes a first inspection; (3) initial measures make the problem go underground for a while; (4) complaints start again; (5) resident association is formed, and complains to the director of the company or
the authority; (6) an abatement notice is issued and (7) remedial works are undertaken in a great hurry and under pressure.

A decade before, the deodourization works seemed to be done retrospectively. They are the results of the odour complaints or the pressure of the community. Nowadays the assessment on the large offensive smell facilities are all involved odour assessments in the Environmental Impact Assessments, EIAs (HKG, DSD, 1992 \& HKG EPD, 1994).

2.15 The effect of odour on health

Odours produce a wide variety of emotional and physical effects, unpleasant odours give rise to unfavourable reactions which can, at the very least, cause much unhappiness for the receptors.

There is no doubt that odours do pose a problem for environmental health but to what extent they affect the health of an individual exposed to an odour is difficult to say with precision.

Odours are very subjective in nature and affect people in different ways. Various common reactions which are associated with exposure to odours include physiological, toxic, psychological, annoyance and social reactions, many people experiencing more than one reaction at the same time (Artis, 1984).

The World Health Organisation's viewpoint is that health is more than the absence of disease or infirmity. It is "a state of complete, physical, mental and social well-being' (WHO, 1968), If this is accepted then odours destroy the enjoyment of food and home, are prejudicial to health thus adequate legal measures have to be made to ensure their control.

2.2 Principle of Deodourization

Odour Control measures

The successful resolution of odour elimination and complaints requires a careful analysis of the problem. A suggested strategy to control the odour is as follow:

1. Identification of the sources of odour
2. Identification of the chemical composition of the odour
3. Quantification of the intensity and determination of the degree of control that must be achieve to eliminate or reduce complaints
4. Selection of a method of controlling the odours.

Identification of the odour source may be simple in a small plant. A large treatment complex such as the waste water treatment plant may have numerous odour sources. General sources of odours from the odour causing industry are listed in Table 3.1 (Hesketh, 1989).

	Principal Type of Odorous Material													
Typo of Indusiry				$\begin{aligned} & \text { g } \\ & \underset{E}{\circ} \\ & \text { E } \\ & \underset{E}{\prime} \end{aligned}$			$\left\lvert\, \begin{aligned} & \text { g } \\ & 5 \end{aligned}\right.$	$\begin{aligned} & \frac{0}{0} \\ & \frac{c}{c} \\ & \frac{\pi}{0} \\ & \frac{0}{8} \end{aligned}$	$\begin{aligned} & \text { 菏 } \\ & \frac{1}{0} \\ & \frac{2}{u} \end{aligned}$	$\begin{aligned} & \frac{\pi}{0} \\ & \frac{\square}{0} \\ & \frac{\Xi}{2} \end{aligned}$				$\stackrel{\text { ¢ }}{\substack{\text { ¢ } \\ \text { E } \\ \hline \\ \hline}}$
Krolt P－jper M ${ }^{\prime \prime}$	－	埋	E											
Peirolmum Pelinery	－	畳		n	格									
Ferlilizer				－		高	－	－	■					
Asphall Soturotors					－	宫				置	－			
Metai Cosling								\square		m				
Barrel Mig／Raconditoning						T					m			
Pastreides										\＃		哑	\％	
Print \＆Vornish											－			
Frod 2x Agrecuiture	\％	－		E				\％						茥
Landluls z Senoge Trentinent	\％	起		\square										－
Fendroing	E	T		E			－				回			m
Transporation						長					■			

Table 3．1 General Sources of Odours from the Odour Causing Industries
（Source：Hesketh 1989）

The large offensive plants discussed are abattoirs，sewage treatment plants， screening plants，refuse transfer stations，refuse collection points．The type of odorous materials are hydrogen sulfide，mercaptans，ammonia，urea，hydrocarbons and amines as listed in the table．However，only a careful odour survey combined with dispersion modeling will provide sufficient information to determine the required control strategy since the odour components varies from time to time．

Numerous analysis of odorous gases from a variety of municipal sources have shown the presence of one hundred to two hundred organic molecules. Virtually every family of organic compounds has been found including organic acids, aldehydes, ketones, ethers along with mercaptans, amines and halogenated hydrocarbons.

Control of odour may include oxidation, absorpuon, adsorption, biological reaction and chemical addition to the sources or process modifications in an effort to prevent anaerobic conditions in the system itself. More commonly, the odour sources should be covered and a ventilation system delivers these off-gases to an odour removal system.

There are numerous odour control systems available, including adsorption, incineration, biofiltrations, and wet scrubbers. Each system has advantages and disadvantages, and only a careful analysis of the problem will help to select an effective odour control equipment.

2.21 Adsorption: Activated Carbon

Activated carbons can be produced from a variety of carbonaceous, raw materials such as wood, coal, peat, nut shells, lignite, bone and petroleum residues. The manufacturing process involves heating slowly in the absence of air to 400$600^{\circ} \mathrm{C}$, sometimes with the addition of a dehydrating agent such as zinc chloride or phos 'oric acid. Activation is by steam treatment at $750-1000^{\circ} \mathrm{C}$, it is a combination of combustion and oxidation resulting in the creation of a fine pore structure and large internal surface area. The non-polar surface of activated carbon making it particularly effective for the adsorption of organic vapours from humid air streams. Some carbons are further treated by impregnation with metals or salts to produce "catalytic" carbons for the adsorption of specific adsorbates. Granular activated carbons typically have surface areas in the range $500-1400 \mathrm{~m}^{2} \mathrm{~g}^{-1}$ (Dorling, 1978)

Adsorption is the attraction and accumulation of molecules on the surface of a solid, involves weak forces (physical adsorption) and is usually reversible. Hence, activated carbon is only a storage system for the odorous vapours or gases which it removes, i.e. if regeneration procedures are employed the intensely odorous emission produced must be subjected to thermal or catalytic incineration to destroy the odorous constituents. If the filter are discarded they must be disposed of by dumping or incineration.

The adsorption capacity of activated carbon depends upon:-

- the concentration of adsorption of adsorbate in the space around the adsorbent
- the total surface area of the adsorbent
- the total volume of pores in the adsorbent with drameters small enough to facilitate the condensation of the adsorbed gases
- the temperature
- the presence of other gases which may compete for a place on a adsorbent
- the characteristics of the molecules to be adsorbed, weight, electrical polarity and shape
- the electrical polarity of the adsorbent surface
- the contact time between adsorbate and adsorbent in a dynamic system

The dynamic adsorption can be expressed in graphical terms and a simplified picture of what happens in a static bed of activated carbon is shown in Fig 3.1. For an activated carbon bed of face area Acm^{2} and length d cm , subjected to air flowrate of $\mathrm{V}, \mathrm{cm}^{3} \mathrm{~s}^{-1}$, containing an odorant at a concentration of $\mathrm{C}_{\mathrm{o}}, \mathrm{g} \mathrm{cm}^{-3}$, the equilibrium concentration of adsorbate in the vapour phase (XY) progresses through the bed with time. The distance occupied by the wave (XY) is termed the Mass Transfer Zone (MTZ).

Fig 3.1 Dynamic Adsorption on Activated Carbon

If the maximum tolerable concentration permitted in the treated effluent is C_{x}, $\mathrm{g} \mathrm{cm}^{-3}$ (the breakthrough concentration) the point P will eventually be reached when this concentration is attained. The time interval from the start of the operation to this occurrence is termed the Penetration Time, and the amount of odorant adsorbed per unit weight of carbon at this stage is a measure of the Penetration Capacity. In odour control applications these become the most important parameters as they indicate when the carbon requires regeneration or replacement, and when the treated air is likely to cause an odour nuisance.

Performance of thin filters at short contact time was done by Dorling. Odour from the animal by-products was examined. The odorous constituents from cooking of animal alcohol, ethanal, hydrogen sulphide, methyl mercaptan and carbonyl sulphide. It was shown that although removal efficiencies was in excess of 90% for
some constituents, the analytical and sensory results concluded that at short time of contact, say 0.5 sec . activated carbon is not efficient for the sustained removal of malodorous organic compounds. Activated carbon with short contact time are not suitable as a primary abatement system for the animal by-products rendering plant.

The efficiency of adsorption of activated carbon filters for the removal of odorant species in air is dependent upon the origin and properties of the carbon, the chemical nature of the odorant and the operating conditions.

The most important operating variable is the contact time which, for any given filter thickness, is inversely proportional to the linear velocity and can b equated to the volume of carbon per unit volume of air to be treated in one second. The value can be adjusted by varying the flowrate or the quantity of carbon. The higher the contact time the better the performance. Practical limitations are the cost and size of the equipment and the increasing air resistance of the filters with increasing thickness. the odour abatement efficiency was never entirely satisfactory for dealing with primary odour emission.

Addition of ozone

The addition of ozone before adsorption can be very beneficial and economic in prolonging the working life of the carbon filter. It is most effective with sulphurcontaining compounds at long contact time and high ozone/odorant molecular ratio. Ozone does itself eventually break through the filter and steps should be taken to guard against any toxic effects.

Some Advantages and Disadvantages of Activated Carbon:

2.22 Absorption: Scrubber

Wet scrubber is a common specified odour control device. There are two approaches to wet scrubbers, one method disperses a small quantity of finely atomized droplets into the gas stream and provides a 15 second to 30 second contact time for exchange of odorous gases to the liquid droplets.

The other method utilizes absorption columns filled with a packing material. The purpose of the packing is to provide a retention time for the liquid, create a large liquid surface area and allow thorough contact between the gas and the liquid. Packing is available in a variety of shapes, sizes and materials.

Packing provides and extends the surface area for the transfer of the gas to the liquid phase. The route for both the gas and liquid increases the retention time between them. Good packing has a large void space, has a large exposed surface area, is lightweight, large exposed surface area. This surface area is required for the transfer of the contaminant from the gas phase into absorbent solution.

Generally, packed absorption columns consist of a vertical cylindrical tower with appropriate supports to hold the packing material, a liquid distributor above the packing to provide even water distribution. Air enters the bottom of the tower and exists at the top after demisting. Water falls counter currently under the influence of
gravity, where the flow is impeded and redistributed as it spreads around, across and through the packing surfaces.

The scrubbing solution falls into a collection tank (sump) where chemical adjustments are made and the solution is re-circulated to the top of the scrubber. The major criteria in the design of the absorption column is selecting the correct chemistry and providing optimum conditions for transfer of the odorous molecules from the air stream to the liquid for removal. The common odorous gases from the waste water such as hydrogen sulfide, mercaptans, amines and many other odours are readily absorbed, and oxidized in a wet scrubber when the re-circulating solution contains the correct chemicals at sufficient a concentration.

Some Advantages and Disadvantages of scrubber:

ADVANTAGES	DISADVANTAGES
+	Constant removal efficiency
+	Relatively small space required
	(compare with biofilter)
+	Able to collect particulate as wandle chemicals $(\mathbb{N o}-$ High operating cost (More mechanical
	need of prefilters)
+	Fiberglass construction can resist
	corrosive gas, e.g. $\mathrm{H}_{2} \mathrm{~S}$

2.23 Incineration

Thermal incineration

Incineration of many gases and vapour can be completely destroyed by rapid oxidation. For example, the incineration of carbonaceous compounds can be destroyed to carbon dioxide, and water vapour. Every hydrocarbon material has a property which we call the auto-ignition temperature. But in practice, a few hundred degree of temperature should be added to it in order to overcome some heat loss

Table 3.2 (Ross, 1975).

Acetone	1000	Hydrogen.	1070
Ammonia	1200	Hydrogen cyanide.	1000
Benzene	1075	llydrogen sulfide	500
Butadiene	840	Kerosene	490
Butslalcolod	693	Maleic anhydride.	890
Carbon disulfide	257	Methane	999
Carhon monmovide	1205	Melhrl alcohol	57.9
Chlorobenzene	1245	Dubhorommehane	1185
Cresol	103%	Methyl ethsl ketone.	960
Cycloherane	514	Mineral spirits.	475
Dibutyl phthalate	760	l'etroleum naphtha	475
Ethyl ether.	366	Nitrobenzene	924
Methslether	002	Oleic arid	685
Ethane .	9.50	lhenol	1319
Ethislacetate	007	Phthalic anherdride	1084
Ethil alcohol	799	Propame . .	854
Ethyl benmene	S70	lroplene	910
Fithyl chloride.	965	Surene .	015
Elhylene dichloride	775	Sulfur . .	450
Ethilenc glycol	775	Toluene	1026
Fthilene oxide	801	Turbentinc	48.5
Furfural.	730	Sim! aretate	800
Furiural alcohol	915	Silicne . .	92:
Clycerin	739		

Table 3.2 Autoignition Temperature of Hydrocarbons, ${ }^{\circ} \mathrm{F}$

To achieve complete combustion by the thermal destruction of odours, generally, gaseous odour is retained at 1200 to $1500^{\circ} \mathrm{F}$, for 0.3 to 0.5 seconds, and it will be oxidized, providing adequate turbulence and oxygen are present. Some cases, auxiliary supply of oxygen and fuel is required. Therefore additional fuel cost leads to the disadvantage of using incineration for odour control.

There exists advantages by using thermal destruction of odours. It is claimed to be simple, effective, permanent, and will not give rise of secondary effluent problem, a drawback of wet scrubbing but there are disadvantages. Note that incomplete combustion of many odorous materials can produce substances that are even more offensive. Saturated hydrocarbons can burn to aldehydes, alcohols to organic acids, and aromatics to unsaturated compounds which are pungent and irritating. Furthermore, some final combustion products e.g. oxides of sulphur and nitrogen are odorous and will properly require dispersion via a tall chimney.

Moreover, another drawback of using incinerator for deodounzation is the fuel cost. It is comparatively higher than other methods.

Catalytic Oxidation

A catalyst is a material that causes or accelerates a chemical reaction without itself being permanently affected by the reaction. Common catalyst materials include
platinum, palladium and vanadium although other materials such as chromium, nickel, manganese and copper are used. Gases before entering the catalyst incinerator should be free of dusts that might cause catalyst loss by abrasion and from other compounds that might imparr catalyst activity by coating the catalyst or poisoning it. Catalytic rombustion will successfully destroy odours from many processes such as amines, aldehydes. Capital investment will have to be considered carefully as it may be higher than for othe ^nmparable, processes. 'Where the catalyst cannot cope with the type of pollution additional treatment is required

Catalytic Materials for the Odours:

Reactant	Resulting product	Catalyst
Amines	Nitrites	Ag
Aldehydes	Maleic anhydride	V
Mercaptans	Sulphurs	$\mathrm{Al}_{2} \mathrm{O}_{3}$
		(Activated)
		Source (Summer, 1963)

2.24 Masking

Odour masking is based on the principle that when two odours are mixed, the stronger one will predominate. Thus, when a sufficient amount of a pleasant odour is mixed with an unpleasant one, the latter will become un-noticeable. However, the solution to an odour problem is complicated because the unpredictable reactions of people to unfamiliar or unusual odours. In controlling odours origin 'ing outdoors in such places the odours cannot be contained, the masking compound must vaporize rapidly enough to overcome the unpleasant odour and slowly enough to last for a reasonable length of time. Masking agents are usually organic aromatic compounds, natural or synthetic, such as heliotropin, vanillin, eugenols, benzyl acetate, and phenylethyl alcohol (Cheremisinoff, 1988).

2.25 Ozone

Ozone is a powerful and useful oxidant. It occurs naturally in the upper atmosphere, at heights of $18,300 \mathrm{~m}$ to $27,500 \mathrm{~m}$ above sea level, in concentratic s of 10 to 12 ppm by volume. However, ozone can be formed artificially.

The mechanism of prucuuing ozone is that an oxygen atom O produced by decomposing oxygen molecule O_{2} joins together with another oxygen molecule O_{2} and become O_{3} (ozone) under the energy of certain wavelengths, such as electrical discharging, ultraviolet ray and electrical decomposition of water (Cheremisinoff, 1988), and so on. There are three basic methods of generation ozone:

1. Electrical discharging system
2. Electrical decomposition of water system
3. Plasma resonancing system

Most odours are associated with molecules which have centres of high electron density, such as amines, sulfides, and unsaturated hydrocarbons. Ozone most often reacts chemically, as if it were an electron-deficient molecule. Thus a molecule having a site of excess electrons (i.e., the odours molecule) is attracted to molecule which is deficient in electrons, ozone. The two molecules interact chemically to produce compounds, usually oxides and oxygen, which do not possess any odour.

Cheremisinoff recommended that a time of 3 to 60 seconds must be provided for the ozone, and the exhaust to mix and react. Ideally, ozone is introduced into a plug flow ozone contact chamber having the appropriate contact time. After the oxidation has been completed in the contact chamber, the odourless gas and the reduced ozone, now in the form of oxygen, are exhaust to the atmosphere.

2.26 Biofiltration

Biofilter is a relatively new control equipment used in the treatment of odorous gases contaminated with biologically degradable compounds. In biofiltration, odorous gas is brought in contact with biologica ${ }^{17 \times r}$ active substrate. The odorous compounds from the gas are first adsorbed on the surface of the substrate or adsorbed in the water which is typically present in the substrate. Subsequently, the compound are biodegraded by a variety of microbiological processes.

The distribution of microbes in the biofilters has been described as being vertically segregated (Neff, 1991). In the lower portions of the biofilter bed, the total microbial population density is the highest. It has been assumed that the microbes at the bottom of the biofilter preferentially metabolize the more readily degradable influent compounds and utilize less of the nutrients in the filter material. Conversely, the less degradable compounds are more readily assimilated in the upper portion of the biofilter.

The typically size of the biofilters are about 100 cm deep and contain packing material. The size of the biofilter was determined by the partition coefficient and the bio-degradation rate (Hodge, 1995). The packing material or carrier substance serve a propose of providing with the microorganisms with sufficient nutrients. Therefore porous media capable of adsorbing gaseous compounds and supporting biological
growth substances are used as filter material, such as compost, soil, peat moss granular activated carbon (GAC).

There is insufficient available data on elimination rates of pollutants for various filter media. The removal $\sim f$ odour by biofiltration or the mass transfer rates depends on steps similar to: wet scrubbing (gas/liquid contacting such as absorption)and dry scrubbing (gas/solid contacting such as adsorption). However, the inter-relationship is quite compl $\quad x$ and highly specific only limited number of parameter correlation can be found in literature (Allen, 1994). In general, operating iditions such as moisture content, pH , temperature, and nutrient concentrations are the critical factors affecting the process rate but it has not been extensively tested.

A mathematical model was developed that describes basic transport and biological processes for a biofilter (Hodge, 1995). In the modelling, (i) compost, (ii) GAC granular activated carbon, and (iii) a mixture of compost and diatomaceous earth as biofilter packing materials to treat ethanol vapours. While the adsorption capacity of the GAC was substantially reduced by water and microbial growth, it remained highest for the three media. The compost microbial community had a higher degradation rate constant. Carbon provided the best treatment overall.

The biological-treatment processes used in wastewater treatment facilities and contaminated soil treatment plots have proven effective (Hodge, 1995). Most research and development of the technology has occurred in Europe (Allen, 1991\& 1994) \& (Leson, 1991). In the US, there was limited application of biofilter (Neff, 1991). The
reason was that it was due to the problem of high pressure required for the air distribution in the old system. But after modification of the air distribution design, it will become more popular. Successful applications in Europe include abatement of odours from composting works, wastewater treatment plants, and similar facilities. In the Federal Republic of Germany , about 30 companies and manufacturers are active in the design and construction of biofilters (Koenig, 1990).

Relationship between the particles size of the biofilter and the pressure drop of the filter was examined (Allen, 1994). If the pressure drop increased to 2.5 kPa , the filter bed needs to be repacked or the compost replaced. When water content of the filter was increased, coagulation of small viscous particles was enhanced and the pressure drop increased sharply. However, the rapid built-up in pressure could be suddenly released by channeling, i.e., a breakdown of the overall flow restriction by the formation of a channel of much less resistance caused by a separation of packed materials. It is not desirable because it allows pollutant to exit the system without treatment.

The following lists the operating conditions for the biofilter to treating the $\mathrm{H}_{2} \mathrm{~S}$, (Allen, 1994):

1. Temperature: 25 to $50^{\circ} \mathrm{C}$
2. Compost pH: >3.0
3. Compost water content: $50+-15$ percent
4. Compost sulfate content: $<25 \mathrm{mg}-\mathrm{S} / \mathrm{g}$
5. Pollutant retention time: $>15 \mathrm{sec}$

Recently, biofiltration treatment has expanded to include control of volatile organic compounds (VOCs) and air-toxics emissions from a variety of contaminant sources. Typical control efficiencies for removing VOC (Ray, 1995) ranged from 70 to 86 percent. The control efficiency of ammonia ranged from 78 to 96 percent.

A possible advantage of biofiltration over other air pollution control equipment is in treatment of large volumes of off-gases containing low concentration of easily biodegradable constituents. Current approaches for treating such waste gas streams have disadvantages. Chemical methods such as incineration, chlorination, ozonation, and combustion expensive, requiring elaborate equipment and substantial amounts of addition fuel. Adsorption on activated carbon is also costly, and the saturated carbon may be a hazardous waste, requiring either regeneration or transportation to a hazardous waste landfill. Below lists some advantages and some disadvantages of biofiltration. It is good for the municipal wastewater treatment plant, as the odours usually caused by a mixture of low molecular weight reduced sulfur compounds and various other compounds. The highly odorous reduced sulfur compounds are relatively easily oxidizable into less odorous forms by wet scrubbing. However, wet scrubbing with oxidative reactions is sometimes less effective with other types of odorants (Ostojic, 1989). Therefore activated carbon is sometimes needed to polish the odours remaining after wet scrubbing. Biofiltration was shown to be capable of achieving high odour removal efficiency without a need for several stage of treatment.

- high odour removal possible
- bacteria cultures sensitive to changes in inlet conditions (temperature, composting)
- low capital and operating cost for in-- may require gas conditioning soil biofiltt
- low maintenance (primarily for in-- space requirements (for in-soil filters) soil biofilters)
- versatility in performance (e.g. in
- potential deterioration of the comparison with wet scrubbing which uniformity of flow distribution offers limited types of reactions)

Advantages and Disadvantages of Biofiltration
Table 3.3

Cost implication of biofilter \& compare with other measures

Biofilter technology in general represents the most cost effective means of controlling odours. A comparison of cost data was prepared (Neff, 1991) for several odour control technologies. A comparison basis used air flow rate of $10,000 \mathrm{cfm}$ (cubic feet per minute) with an inlet $\mathrm{H}_{2} \mathrm{~S}$ concentration of 20 ppm and an outlet concentration of $<1 \mathrm{ppm}$. The cost comparison is presented in TABLE 3.4. As seen in
the table, the biofilter is the less expensive system to construct and operate in an annually base.

Deutscmark per 1000m3 of air

Incuneration
DM 9.1

Chlorine 4.2

Ozone 4.2

Activated Carbon, with generation 1.5

Biofiltration 0.6

Cost of odour removal at a waste water treatment plant in Heidelberg, Germany, by Neff, 1990.

Table 3.4

Tests indicate that the lifetime of the filter media exceeded three months and may well extend to beyond six months.

Research and development work is required to reduce the costs of construction and to find materials to which will not deteriorate quickly. Work is also required to reduce the large surface for the biofilter especially for accommodation in the plants of Hong Kong.

3. Objective \& Methodology

This dissertation aims to investigate (i) the nature of odour (ii) the odour problems generated from large offensive smell facilities (iii) the measurement of odour (iv) the deodourization measures (v) the legislation control of the odour nuisance.

The methodology includes the literature search and questionnaire survey. A literature search will give some brief explanation on the deodourization measures and comparison of effectiveness among the odour removal equipment.

Besides, a questionnaire was set and a survey has also been carried out on the study of the odour problem, it's measures and regulations adopted by the overseas countries. Information was also gathered from various departments in Hong Kong through questionnaire and interviewing of the relevant persons. Many government departments such as $\mathrm{EPD}, \mathrm{DSD}, \mathrm{USD}$ and RSD have been approached to review the existing problems and measures.

4. A Review of Odour Problems

4.1 Odour Problems and its Control in Overseas Countries

One of the objective of this project is to review the development of the deodourization measures and legislation in the overseas countres. This is to compare with the existing one in Hong Kong. The data collection process involved :

- a questionnaire survey on the relevant organisations and authorities of overseas countries;
- a questionnaire survey on the relevant departments in Hong Kong, and interview with the relevant engineers and officers

A questionnaire as shown in Appendix 3 was designed to assist in gathering information on odour control and legislation by overseas countries. The questionnaire has three main themes, first it aimed to identify the odour problem and the seriousness in different facilities. Secondly, it is to find out what kind of measures are being used for odour control. Finally, it is to obtain information on the legislation or code of practice directly related to the control of odour in the facilities.

A total of 59 organisations or authorities in overseas countries were approached. The approached overseas countries include U.S.A, Canada, West Germany, Denmark, Australia, France, Brussel, Singapore, Thailand, Taiwan, etc.

Many of them are government offices, agencies and research centres, (Appendix 9). Response were received from 16 of them. However, only 9 of them had completed the questionnaire, the list of the responders is shown in Appendix 4 and the completed questionnaires are shown in Appendix 5.

Analysis and summary of the returned questionnaires

The summary of the information provided by these 9 responders was tabulated in Appendix 6. Each responder has adopted various kinds of control measures and there exists legislation/code of practice for the odour control on the offensive smell facilities. They are described as follows:

Responder \#1

New York State Department of Environmental Conservation, Division of Water

Information from the New York State Department of Environmental Conservation, Division of Water, was only concerning the sewage treatment plants. They recorded 592 numbers of sewage treatment plants in their state. In which 585 of them were in acceptable odour level. And 7 of them were between moderate and serious odour level. Five plants have adopted the improvement of operation for reducing the odour. Only one plant has equipped with water scrubber to mitigate the problem and the other one has changed it's process to avoid the odour. As seen from these figures, the problem of odour emitting from the sewage treatment plants in this state is not substantial.

As shown in the returned questionnaire that the affected persons were restricted only to the operators and the passers-by, but not the nearby inhabitants. The reasons may be due to the low odour emission or the inhabitant are situated farther away from the plants. The reasons for those plants adopting odour control equipment are: (1) they generated high level of odour, (2) there exists sensitive receivers. As such, the plants with moderate and serious odour problem have adopted some measures su $\cdot \frac{h}{h}$ as scrubber and improvement of operation as nc $\frac{\text { ed. }}{}$.

No legislation was directly related to the control of the odour level inside or outside the sewage treatment plants, but there is only a general nuisance provisions of local legislation, operation and maintenance conditions of permit to discharge.

Responder \#2 \& 3

New York State Department of Environmental Conservation, Division of Solid \& Hazardous Materials

This division manages the refuse collection stations and the composting plants. They listed out the legislation related to these plants and showed that there are different kinds of control equipment for these processes.

There is legislation directly related to the control of odour level of the refuse transfer plant. As reported by the Division of Hazardous Materials that "New York State's Environmental Conservation Law states that the Department has the power to
adopt and promulgate, amend and repeal rules and regulations directed at the prevention and reduction of obnoxious odours". New York State's Part 360 regulations which govern the operation of transfer stations include a requirement that processing, tipping, sorting, storage and compaction areas must be located within an enclosed building. Furthermore, the regulations state that transfer stations and transfer vehicles must be cleaned to prevent odours. The regulations also state that odours must be effectively controlled so they do not constitute nuisances or hazards to health, safety, or property".

It is clearly showed that it is a statutory requirement of controlling the odour generated from the refuse transfer station. Of 481 refuse transfer stations, 194 are large ones and there are moderate odour emission from these plants. Hence, mitigation are adopted in the large plants. They employ odour-control utilize perfumed misting agents inside their tipping floor area.

For the composting plants, there is legislation to follow. In the document from, entitled 6NYCRR Part 360, Solid Waste Management Facilities, New York State, there is a requirement of that the facility must be designed and operated to control and odours. (Page 5-3 Section 360-5-3, h).

Subsequent to this regulation, 34 numbers of composting plants which generating moderate odour are equipping with atomizer for spraying into the pile of the compost.

Responder \# 4

Florida Department of Environmental Protection

According to the data provided by the Florida Department of Environmental Protection, there are 3475 numbers of sewage treatment plant and 6 numbers of composting plant respectively in Florida. The odour problems affect the operator, the passers-by and the nearby inhabitants. Although, in the questionnaire, they do not indicate which kind of control measures are adopted, it is clear that they should follow stringent rules for new treatment plants and modifications to existing plants. These plants shall be designed and located on t^{\prime} ə site so as to minimize adverse effects resulting from odours, noise, aerosol drift and lighting. In the rule 62-600 of Florida, they require the plants to avoid causing the above mentioned adverse effect and reasonable assurance may be based on such means as aeration, landscaping, treatment of vented gases, setback distances, chemical additions, prechlorination, ozonation, innovative structure design or other similar techniques and methods. (62600.400 of Domestic Wastewater Facilities, chapter 62-600, rule of Florida DEP)

Moreover, terms of conditions are imposed in the rule that if the plants no longer function as intended, or no longer safe in terms of public health and safety, or odour adversely affect neighboring developed areas, corrective action shall be taken by them. (62-600.410 of Domestic Wastewater Facilities, chapter 62-600, rule of Florida DEP)

Responder \# 5

Perth, Western Australia, Department of Environmental Protection

In the response of the Depaitment of Environmental Protection of Perth, Western Australia, there exists no odour problems in the pumping statıon and the refuse transfer stations. However, the sewage treatment plants and the abattoirs are facing moderate problems of odours. The effective area of odours affecting is about 500 meters to 1000 meters. It is revealed that 10% of the plants have been equipped with control measures. They are scrubber and incinerator/after burner, both in 5%. And there are about 1% of activated carbons.

Code of Practice exists for the abattoirs. However for the other types of plants they are only ensure adequate buffer distances around the plant.

Responder \#6

Texas Natural Resource Conservation

It was seen that there are 2430 sewage treatment plant reported and the odour problem is in moderate but there is serious problem in the composting plant. The method of treating the odour is by the scrubber and various management method such as operation and maintenance, design, and collection system.

It is a need to use odour control equipment if there exist sensitive receptors and also it is a statutory requirement. Similarly, the buffer zone distance is adopted to control the odour emitted from the plant.

Responder \# 7

State of New Jersey, Department of Environmental Protection

The information provided by the State of New Jersey shows that they are facing very serious problem in the sewage treatment plants, and composting plants. Therefore all the composting plants have installed the odour control equipment. But there are only 10% of the sewage treatment plant have installed such equipment.

Other than the commonly used scrubber as the odour control equipment, they also adopted the biofilter and the activated carbon. The percentages of these equipment installed are $60 \%, 30 \%$ and 10% respectively.

Insufficient information was provided on the legislation of the control but it is known that they are required to set the operation limit of the plants in a level of no odours scented beyond the property line.

Responder \#8

State of Illinois, Environmental Protection Agency

In the State of Illinois, there are about 1400 sewage treatment plant, only 10 of them have moderate odour problem. In which only 4 or 5 sewage treatment plants have odour control equipment. It is in an extremely low proportion. However nearly all of the refuse transfer stations and the composting plants have adopted various kinds of measures, such as the activated carbon, chemicals, and operating control. Setback requirements from receptors are the means to control the odours in a legislative manner.

Responder \# 9

Republic of Singapore, Ministry of the Environment

There are altogether 6 numbers of sewage treatment plant and 134 numbers of pumping stations in Singapore. The seriousness of them were classified as moderate. The only one refuse transfer station is in an acceptable level. The affected persons are the passers-by and the nearby inhabitants within the 2.8 ha area coverage. They indicated that all of the sewage treatment plants have only been installed activated carbon as the control equipment for treating the high level of odour emission. And the odour control equipment in all those plants will be upgraded in the future. On the legislation size, 1 km buffer zone imposed around the plants, in which only industrial development are permitted. Plans underway to reduce buffer zone in the long-term.

Analysis of the result:

Based on the data provided by the questionnaires from the overseas countries, the seriousness of odour problem generated by the offensive smell plants can be analyzed. As classified in the question 1 of the questionnaire, the seriousness of the malodour can be divided into the following 5 classes for ease of calculation: no odour, acceptable, moderate, serious and very serious, with grades 0 to 4 . It was found that the overseas authorities or organisations have a serious problem in the composting plant and moderate to serious problem in the sewage treatment p.ants and little problem for another plants, (Fig. 4.1.)

It was calculated that there are 44% of the offensive smell plant installed air pollution control equipment for deodourization. Fig 4.2 shows the breakdown of the kinds of control equipment. The most common one are the scrubber and the activated carbon with a small number of biofilters and others.

Regarding to the question 6 \& 7, the reasons for installing and not installing odour control system was asked. The summary of the questionnaire survey is shown in Appendix 6. Fig 4.3 and Fig 4.4 are the graphical representation of results of question $6 \& 7$. The main reasons for them to install such equipment is the existence of sensitive receiver and the odour emission is high, only about 18% is according to the statutory requirement (Fig 4.3). On the contrary, they did not install odour control equipment because odour was in low concentration emission, however the economic factor is increased to 26%. Economic concern plays an important role in considering the odour control equipment Fig 4.4.

		Offensive Smell Plants	Seriousness of Odour
C.P.	$:$	Composting Plant	$0:$ No Odour
S.T.P.	$:$	Sewage Treatment Plant	$1:$ Acceptable
Ab.	$:$	Abattoir	$2:$ Moderate
R.T.S.	$:$	Refuser Transfer Station	$3:$ Serious
P.S.	$:$	Pumping Station	$4:$ Very Serious

Fig 4.1

Fig 4.:

Fig. 4.3

Reasons for those plant without installing control equipment

(26.3\%) No sensitive receiver

Fig. 4.4

4.2 Odour Problems and their Control in Hong Kong

The offensive smell plants in Hong Kong, including Sewage treatment plant, composting plant, abattoir, refuse collection point and refuse collection station, have also been studied. The details are shown in he Table 4.1. The information on these $\mu \sim$ nts was gathered from:

1. questionnaire to the appropriate departments, see Appendix 7;
2. interview with the officers; and
3. search from EIA reports

The abattoir in the Kennedy Town created environmental problems to the nearby inhabitants. This was due to the close distance between the plants and the inhabitants and the inadequate of deodourization measures. Therefore, in the EIA reports of the abattoir (MacDonald, 1995) \& (ECEL, 1995) and the refuse transfer station (HKG EPD 1992, 1993, 1994), it was found that air pollution nuisance should be considered and abated in the newly designed plants.

There is no statutory requirements for the composting plants, sewage treatment plants, and refuse collection points to have any air pollution control measure. For existing plants the authority is acting in a complaint basis. That is, if there is no complaint then there is no air pollution problem. However, for some of the plants such as the composting plant they have installed wet scrubber to treat the
odorous gas from the bio-degradation of the compost. There are also some scrubbers in the refuse collection points as reported by the Urban Services Department and Regional Services Department in their returned questionnaires.

The kinds of air pollution control equipment used in various plants are listed in the Table 4.1. It is revealed that the most common measures are scrubber and activated carbon. Only one biofilter is being used in the sewage screening plant in North Point and also there is a proposal to use the technique of ozonation to abate the odorous gas from the newly constructed abattoir in Sheung Shui.

Plants	Activated Carbon	Scrubber	Biofilter	Ozone	Nil
Abattoir Kennedy Town Sheung Shui (proposal) Others (TW,CSW,CC,YL)*		\checkmark			
Refuse Collection Point (USD) Quantity: (105)	$\checkmark(10)$	$\checkmark(61)$		\checkmark	
Refuse Collection Point (RSD) Quantity: (2537)	$\checkmark(7)$	$\checkmark(2)$			
Refuse Transfer Station Kln Bay Island East Sha Tin	\checkmark				
Sewage Screening Plant Kwai Chung StoneCutters Island Wanchai West North Point	\checkmark	\checkmark			
Composting Plant	\checkmark	\checkmark			

*TW: Tsuen Wan, CSW: Cheung Sha Wan, CC: Cheung Chau, YL: Yuen Long
Table 4.1 Hong Kong's Offensive Smell Plants:

The odour limit for odorous plants

In general, there is no statutory criterion for maximum levels of odours in Hong Kong but the Environmental Protection Department recommend a level of 5 odour units predicted over 5 minutes for assessing impacts at any sensitive receiver. EPD also recommend a maximum level of 2 odour units at the site boundary. This is the common acceptable level in EIA and the criterion set in the Best Practicable Means (BPM) of the Specified Processes. This odour unit is recognised as a means of predicting whether odour nuisance will occur once the proposed use is in operation.

Among the aforesaid offensive smell plants, the abattoir is the only one which is classified as the Specified Process under the provisions of the Air Pollution Control Ordinance. The abattoir, by-products plant of the slaughterhouse, is fall within the category of rendering works and is under licence control and is necessary to incorporate best practicable means to prevent noxious emissions. Notes on the requirements of BPM are provided in Appendix 8.

Licence will only be granted to the specified process if the owner of the premises conducting the works can provide and maintain BPM for the prevention of the air pollution emissions from it and the air pollution emissions from the premises will not cause unacceptable air quality so that the Air Quality Objective can be attained, and the health of the people in the surrounding will not be jeopardized.

4.2.1 Abattoir

Although in this study the abattoir is the only plant which is classified as specified process, and under the control of EPD, the notes on Best Practicable Means (BPM) can still be adopted as a reference for other offensive smell plants.

In BPM, the design of the chimney is governed by the mathematical or dispersion modelling such that the emission from the exhaust will not cause air pollution. The chimney height, efflux velocity, exit temperature and the mode of discharge are the essence design conditions for the chimney. Secondly, the emission limits of 2 odour units must be complied with. And emission concentrations for air pollutants such as hydrogen sulphide, mercaptans, chorine and its compounds, ammonia, amines and amides are limited to certain figures. Thirdly it has recommended some kinds of odour control equipment such as scrubber, incinerator, biofilter, or similar suitable control equipment. It has also emphasized on the good handling of raw material, processing and housekeeping to minimize odour emission. Lastly, the monitoring of the control equipment to maintain its efficiency is needed.

4.2.2 Sewage Works

The sewage treatment plants in Wan Chai and North Point had been installed with odour control equipment. Before the retrofit of the odour control equipment, there existed serious odour problem in the vicinity of the plant as they are located
closely to the commercial and residential areas therefore measures should be made. Biofilter was introduced to the sewage treatment plant in North Point and scrubber was used in Wan Chai.

EIA on the study of the sewage screening plants and pumping station have been conducted by Drainage Services Department, 1992. East Kowloon improvements Works of the sewage involved an upgrading of an existing pumping station in Kwun Tong and installation of a new pumping station at Yau Tong. Odour emissions from the pumping stations will consist of a range of different odorous compounds. The sewage to be handled at the two proposed pumping stations will be of domestic and industrial origin due to the nature of the Kwun Tong and You Tong surrounding areas and therefore its components are difficult to category in the planning stage.

It was shown in the EIA of the plant that odour panel tests were undertaken at the Kwun Tong Screening plant to provide data for the predictions through the use of an atmospheric dispersion model. It is seen that the condition was carried out base on the worse case assumption. In summer time the odours scented near the Yau Tong pumping station is over 25 odour unit and down to 3.4 odour unit by reaching the sensitive receptors. This modelling results indicate that the levels of odour at the boundary of Yau Tong pumping station exceeded an odour level of 2 . Two odour units is the normally acceptable threshold therefore odour mitigation measures are required.

Unfortunately, there is no statutory requirement by the government to force the contractor in the proposal stage to install odour abatement equipment in pumping stations or in other sewage works. The only requirements laid down in the contract was that no exceeding 2 OD should be received at the boundary. Therefore the proponent might only need to allocate space at the stations for retrofitting odour treatment works if required later. However, in order to manage the odour problem, the plant should be totally enclosed and the control system should be properly designed for the ren val of particular chemicals. The system may include completely capturing devices to direct the odorous emissions to the control system. Moreover, as mentioned before, the odour may consist of various chemical components, it is therefore essential to examine them in the early stage and hence odour control equipment can be chosen in the proposal stage. Without having a thorough assessment on the odour problem in the design stage, the retrospective installation of control systems may arise accommodation problem and other technical problems.

4.2.3 Refuse Transfer Stations

The refuse transfer stations, Kowloon Bay, Island East and Sha Tin, were commissioned between 1990 and 1994 (HKG EPD Environment of Hong Kong 1995). Another five numbers of refuse transfer station are targeted to be
commissioned in 1997 and one will be at 2000 . The odour problem of these stations are well be aware and therefore all existing refuse transfer stations had incorporated with odour control equipment such as activated carbons and scrubber.

EIA studies on the new refuse transfer stations have been conducted for stations in North West New Territories and Outlying Islands. They were being undertaken in the year of, 1993 and 1994 respectively, (HKG EPD, 1993 \& 1994). Ttese two refuse transfer stations are at the rural areas and there exists a very large buffer zone in between the sources and the nearest sensitive receptors.

As in general practice, the reports first analyzed the nuisance which would be caused in the construction stage of the works, then in the operation stage. There would not be any odour problems in the construction stage. Therefore odour would only be considered in the operating stage. There was no existing data of odour levels for the various sites in the remote islands, But the numerous complaints relating to odour of the existing plants should serve for consideration of the interface between the source and the receptors.

The potential odour emission sources from the refuse transfer stations are the deposition of refuse and refuse liquors in the transfer facility; surfaces contaminated by deposited refuse; waste water collection facilities and refuse collection vehicle and container vehicle.

The study recommended that leachate treatment process at Mui Wo will result in the removal of odours compounds. But at the Discovery Bay, the enclosure of the operation within a building with appropriate air control systems should ensure compliance of 2 odour units at the site boundary. For others outlying island station, the problem would be limited to its minimum as the scale of the refuse transfer station are small.

4.2.4 Refuse Collection Point

In the Table 4.1, it shows that there are a large numbers of refuse collection points in Hong Kong managed by the Urban Services Department and Regional Services Department. In order to facilitate the collection processes, the refuse collection points are placed very close to the residential areas, therefore odour problem exists and might get worse in the hot and humid conditions. Therefore a good housekeeping and a proper operation procedures inside the collection point and the proper cleansing of vehicles are essence for air pollution abatement. It was found that scrubbers and activated carbons are the odour control equipment used in the refuse collection points.

4.2.5 Composting Plant

The only composting plant is located in Sha Lan, northern part of Hong Kong. In which srubber is used as air pollution control equipment. Odours will be generated during the bio-degradation process of the agriculture waste and it is shown that composting plants in overseas countries might have a serious odour problem. However, the composting plant in Hong Kong is situated in i" • remote rural area, hence there is no sensitive receptors near the boundary of the plant and nuisance will be minimized.

5. Legal Aspects

5.1 The related legislation and regulations in Hong Kong

The related legislation for the control of odour emission is the Air Pollution Control Ordinance. The main purpose of the ordinance is to control the emission of \therefore pollutants into the atmosphere of Hong Kong from stationary sources. The Ordinance applies to all premises in which air pollutants are emitted from any chimney, engine, furnace, oven or industrial plant. In definition, air pollution nuisance means any emission of air pollutant which either alone or in conjunction with any other such emission:-
a) is prejudicial to health;
b) is a nuisance to the inhabitants of the neighbourhood

Therefore the plant which generates odour and arising nuisance to the public can be actionable under the Air Pollution Control Ordinance. Sections 9 and 10 of the APCO are provisions for controlling the air pollution nuisance: "When in the opinion the Authority an air pollutant nuisance exists or is imminent, he shall notify the owner of the premises the existence or imminence of such nuisance, requiring him to reduce the emission of the air pollutant from the relevant plant. If such air pollutant nuisance is likely to be prejudicial to health the Authority shall require the owner to eliminate the emission of such pollutant. If the owner of the premises fails to abate an air
pollutant nuisance in such a manner as is specified in the abatement notification, he is liable on conviction to a fine." The court, however, will not convict the owner unless the prosecution proves that the air pollutant nuisance mentioned in the notification existed or was imminent at the time the notification was given to the owner.

In determining whether the air pollution nuisance can be established, the authority is based on the criteria in the Technical Memorandum of the Air Pollution control Ordinance.

Criteria in the Technical Memorandum:

1. Objectionable Odour Caused by the Emission
2. The Relative Location of the emission source and the place affected;
3. The Locality of the place affected;
4. The Time, Duration and Frequency of the Emission.

It is noted that there is no quantitative approach to define the level of the objectionable, how far apart is classified as a relatively close distance between the source and the receptor and even there is not a limit on the duration or frequency of the emission.

5.2 The qualitative approach policy

The provisions of the Air Pollution Control Ordinance is according to the policy of qualitative approach.

This is a very common approach in overseas countries [31], regulations generally are phrased as no perceivable odour at the boundary or no justifiable complaints. The problem is that regulations do not provide a clearly established criterion to determine if and when nuisance occurs. This lack of definition of terms invites the need to define these terms almost on a case by case basis. Also, it leads the operator of the source difficult to follow, because the criteria may shift as time progresses. In turn, this creates the possibility to use odour annoyance complaints as a means to influence developments, when in reality the complainants may be of a different nature. This is highly unfavourable for industry, as operators have an interest in a reasonably stable and clear framework in which they can fit their operations.

The following table shows the advantages and disadvantages of qualitative approach policy.

The advantages and disadvantages of qualitative approach policy:

ADVANTAGES DISADVANTAGES

+ Direct 'Measure' or he - Very subjective criterion; nuisance needs undesirable effect: odour case-by-case definition annoyance
+ Cheap for the regulator - Provides no 'Continuity of R.egulation' to (NO measurements) either the community or the operator (Industry)
+ No Complaints - No Problem - Virtually impossible to control
- Impossible to enforce well
- Annoyance almost by definition Impossible to measure, due to external factors (press, community activities etc.)

The method of qualitative approach is also adopted in the New Jersey of United States (Leo, 1994). They are using the similar method as in Hong Kong but they have classified the annoyance to the public into 6 scales. The air pollution nuisance is expressed in odour intensity description. This can provide comparative data to the authority to make decision. However the same problem is that the nuisance is assessed by the officer and they might have subjective point of view on different cases.

Odour Intensity Scale

Scale/ Description	Odour Intensity Description
0	Odour not detectable
1- Very Light	Odour present in the air which activates thr sense of smell but the characteristics may not be distinguishable
2- Light	Odorant present in the air which activates the sense of smell and is distinguishable and definite but not objectionable in short duration (Recognition Threshold)
3 - Moderate	Odorant present in the air which easily activates the sense of smell, is very distinct and clearly distinguishable and may tend to be distinguishable and/or irritating.
4 - Strong	Odorant present in the air which would be objectionable and cause a person to attempt to avoid it completely, could indicate a tendency to possibly produce physiological effects during prolonged exposure.
5 - Very Strong	Odorant present which is so strong it is overpowering and intolerable for any length of time and would tend to easily produce some physiological effects

(Leo, 1994)

5.3 The quantitative approach policy:

Besides the qualitative approach, the quantitative approach takes quantitative angle, based on emission measurements combined with modelling to determine odour annoyance potential.

In this case the emission from the source is measured, using olfactometry to determine the odour concentration. Then, the frequency of occurrence of concentrations that may cause odour annoyance is calculated for the area around the source, using dispersion modelling. The odour annoyance potential is then determined using empirical 'dose-effect' relations, between exposure and actual occurrence of odour annoyance in similar situations. Air quality guidelines can be set using this approach. These can be specified in terms of emission limits for specific sources.

The quantitative approach is adopted in the EIA study in Hong Kong and the requirements of the best practicable means of the specified processes. The acceptable limit for the odour emission at the boundary is 2 odour units or 5 odour units for 5 minutes in an air dispersion modelling basis. This kind of approach can give a clear definition of the requirement for the operators and the authority.

The result of the odour assessment from the qualitatively approach can provide the authorities, the courts, the community, administrators and enforcers a clear basis for assessment of the situation and enforcement of regulatory decisions. In

Netherlands (Harreveld, 1994), this approach has been adopted, and welcomed by the industry to develop a clear basis for licensing to allow them to involve odour management in longer term planning.

This method is not without its problems, however. The dose-effect relationship between the frequency of exposure to certain odour concentrations and annoyance potential is not an easy one, influenced by factors such as the very quality of the odour (the difference between a bread factory and a rendering plant). This approaii depends on the availability of a sufficiently reliable, traceable method for odour concentration measurement (olfactometry). Inter-laboratories in the Netherlands have demonstrated (Harreveld, 1994) that olfactometry can be improved to provide the required reproducibility, also using result obtained by more than one laboratory. The overall error margin (as a ratio between the upper and lower limit of the 95%-confidence interval for two single results, each obtained by a separate laboratory) has been demonstrated to be less than a factor 3 which is acceptable for regulatory use.

The advantages and disadvantages of quantitative approach policy:

ADVANTAGES	DISADVANTAGES
+ Assessment can be well defined, using tools familiar to air pollution managers	- Modelling provides no direct measure of annoyance; a 'yardstick' compared with empirical annoyance
+ Provides clear evidence to law courts in case of conflict	- The dose-effect relationship between calculated exposure and actual annoyance is still insufficiently documented
+ Allows identification of major sources, and consequently the basis for abatement strategy	- Odour concentration measurement (Olfactometry) must be sufficiently accurate and solidly traceable (QA/QC framework for certification)
+ Clear license conditions possible	
+ Enforcement straightforward and objective	

Odour policy should be a reasonable balance between the interests of communities, wanting clean air, and industry/public works, wanting to know where they stand and what it will cost them. Broadly, two types of odour policy can be distinguished. Firstly the qualitative approach states that annoyance may not be caused, but generally fails to provide a clear way to assess presence or absence of annoyance. The second approach, that takes a quantitative angle, based on emission
measurements combined with dispersion modelling to determine odour annoyance potential.

5.4 Requirements to implement the quantitative approach policy

Odorous emissions shall be adequately controlled to ensure that the operation of the plant would not cause an odour nuisance or impose unacceptable constraint on land use. To satisfy this requirements, the authority laid down the limitation of 2 odour units for the plants. As described in previous chapter, one odour unit is the concentration of the odorant which just induces an odour sensation among half of the panelist. Two odour units is two fold of this concentration. Hence it is a stringent requirement. Therefore sophisticated odour control is needed to bring the odour to this level.

Difficulties may be encountered in the implementation of enforcement by the authority. The odour samples collected at the site boundary may be mixed with the background air pollutants. It cannot actually represent the odour concentration.

How to produce a reproducible, traceable method to determine odour concentration is also important. Analytical methods have so far not been able to reliably predict the response of the nose to the complex mixtures that are involved in
environmental odours. Therefore, olfactometry is still the one and only method to measure odour concentration. However, results of olfactometry in literature have been generally very wide apart. Such differences, are not acceptable when using olfactometry as a basis for regulations.

The aim of it was to first improve the consistency of measurements, hat is expressed as the quality parameter repeatability. Then the second aim is to achieve comparable results, ${ }^{{ }_{\wedge}}{ }_{\wedge r}$ different laboratoriu.

6. Recommendation

It is noted that there is an increasing use of biofilter in the western countries due to its high efficiency and less operation technique. But the main consideration is the space for accommodation. Hence, it is recommended to look into detail of its application in Hong Kong since the high temperature and humid condition favour its working environment.

By sampling the odorous gas at the boundary, the background air pollution may add to the sample. It is inadequate for the authority to enforce the control of 2 odour units at the boundary. Therefore in order to eliminate the influence of the background air pollution, the sample should not be taken at the site boundary. The odour concentration should be measured at the chimney or emission point of the plant and it can be converted to the value of 2 OU at the boundary by the mathematical modelling. Hence it is more realistic to set an odour emission limit at the chimney or emission point at the plant instead of at the site boundary. And odour sample is taken at those designated positions.

Finally, the qualitative approach to the control of odour nuisance laid down in the provisions of the Air Pollution Control Ordinance should be changed to quantitative one. But the pre-requisition is the sophisticated olfactometer and its reliability. Therefore the quality of the olfactometer should be traceable and be accredited by recognized authority such as Hong Kong Laboratory Accreditation Scheme HOKLAS.

The recommended quantitative approach can only represent an odour unit of the air pollutant. However, it was found that two different natures of air pollutants with the same level of odour unit may not equal in intensity of annoyance. Therefore, even with the adoption of the quantitative approach to the legislation or code of practices, the control authority may still not easy to judge whether the air pollutant is acceptable. There are many kinds of air pollutants and they will cause annoyance in different level. Hence, it is recommended further defining the statutory $\quad{ }_{\text {ts }}$ of every kinds of popular air pollutanis in terms of odour unit.

7. Conclusions

The emission of odours from industrial and waste management sources has become a major problem for industry and water authorities. A decreasing tolerance by the community for nuisance odours has necessitated programs aimed at minimizing odours at the source and reducing emissions using a range of odour control technologies. A first step towards odour reduction is an accurate determination of the problem, and recent developments in dynamic olfactometry have seen this sensory quantification technique take over from chemical analysis methods as the predominant method used.

Odour problems are likely to get worse due to:

- Industry and public utilities being increasingly enveloped by housing
- Increasing public awareness and political choice for clean environment
- More established mechanisms of community action/legal action

Odour control equipment

Odour control techniques consist of oxidation, adsorption and use of bacteria. The usage of activated carbons and scrubbers for deodourization are widely used in overseas countries and in Hong Kong. But the wet scrubber has its advantage of
constant removal efficiency and its versatile in handling other particulate. Besides, it was seen that the activated carbon, with its simple principle and easy operation is widely accepted by the community for the odour controls. The activated carbon has a very high odour removal efficiency, but the drawback is that the short breakthrough period increases its operational cost and the removal efficiency will be decreasing once the carbon becomes saturated. On the contrary, biofilter has the advantages of simplest operation procedure and lowest operation cost. Recently, the acceptance of biofilter to be the odour control equipment is increasing.

However, odour control systems do not give overall success unless the entire facility is properly enclosed and maintained, especially for the densely populated area like Hong Kong. The air pollution control system includes capturing devices to direct the odorous emissions to the control systems. It also includes effective housekeeping and general cleanliness, proper raw material/finished product handling and storage, good spill protection and waste disposal procedures. In addition with the dispersion through the chimney, the odour could be reduced to the acceptable level.

Survey on deodourization

Only 44% of the large offensive plants in overseas countries have been installed with odour control equipment. The common air pollution control equipment are the activated carbon and wet scrubber. Although there was no quantitative requirements on the odour limit set by the overseas countries, the setback distance
and sufficient buffer zone between the source and the receptors is adopted as one of the requirement.

Similarly, activated carbon and scrubber are the two common odour control equipment used in Hong Kong. However, only one biofilter is adopted in the sewage treatment plant and ozonator is being proposed to be used $i_{\text {i }}$ the abattoir. Thus more study should be made on using biofiltration or ozone as deodourization in Hong Kong.

Legal aspect

There is no statutory requirements for the odour control but the general limit for the odour which would be scented at the boundary of the site is not exceeding 2 odour units.

In Hong Kong, the quantitative approach for controlling the air pollution nuisance is only used in the design stage of the large facilities such as the planning of locating a refuse transfer station or the slaughter house. Usually, the Government might lay down limitations on the air pollution impact arising from these plants. Two odour units detected at the boundary of such plants is usually the requirement. The consultants will conduct air sampling and air dispersion modelling to calculate the odour concentration at the boundary and hence based on these assessment they will recommend some kinds of measures to abate the air pollution if necessary.

Normally, the application of the qualitative approach is on the complaint case against the objectionable odours. When there is a complaint case on the air pollution odour the officer will carry out an investigation and their assessment is based on their opinion or the criteria set in the technical memorandum, then when the case is warranted or legal action will be carried out. By performing such kind of assessment procedures it may be very easy to make the case under control but it is not an efficiency way. Undoubtedly, the quality of the assessment cannot be traced. And the scale of the atnoyance for the officer $\quad \rightarrow$ not the same if subject to a certain kind of air pollutant. Therefore, it is recommended to set up a quantitative approach to control odour nuisance

7. Reference

[1] Air Risk Information Support Center (Air RISC), (1990), Reference Guide to Odour Threshoids for Hazardous Air Pollutants Listed in the Clean Air Act Amendments of 1990
[2] Allen, E.R., and Yang, Y. (1991). Biofiltration control of hydrogen sulfide emissions, presented at the 84th annual meeting of the Air and waste Management Association, Pittsburgh, Pa.
[3] Allen, E.R., and Yang, Y. (1994). Biofiltration control of hydrogen sulfide 1. design \& operation parameters, Air and waste Management Association, Vol 44, July 1994, page 863-868
[4] Allen, E.R., and Yang, Y. (1994). Biofiltration control of hydrogen sulfide 2. kinetics, biofilter performance \& maintenance Journal of Air and waste Management Association, Vol 44, Nov 1994, page 1315-1320
[5] Arthur C Stern., (1968), Air Pollution Volume III, Sources of Air Pollution and their Control, Academic Press New York London
[6] Artis Denise, (1984), Odour Nuisances and their Control, London, Shaw \& Sons Ltd.
[7] Bedborough, D.R., Trott P.E., (1979), The Sensory Measurement of odours by Dynamic Dilution LR299(AP), Warren Spring Laboratory, Dept. of Industry.
[8] Cheremisinoff Paul N, (1988) Industrial Odor Control Pocket Handbook, Pudvan Publishing Co., Inc., Northbrook.
[9] Cross, F.L., Hesketh H.E., (1989), Handbook for the Operation and Maintenance of Air Pollution Control Equipment, Technomic Publishing Co. Ltd.
[10] Derenzo David R., Gnyp Alex, (1991),Recent Development and Current Practices in Odour Regulations, Controls and Technology, Air \& Waste Management Association
[11] Dharmavaram, S. (1991). Biofiltration: A lean emissions abatement technology. presented at the 84th Annual Meeting of the Air and Waste Management Association, Pittsburgh, Pa
[12] Dorling, T.A. (1978), Activated Carbon in Odour Control, Warren Spring Laboratory, Department of Industry Gunnels Wood Road, Stevenage
[13] Environment Protection Authority (Victoria) Air Quality Branch - Technical Services Section, Source Emission Measurements - Standard Analytical Procedure.
[14] Envirochem, ECEL, (Oct 1995), Sheung Shui Slaughterhouse, Supplementary Environmental Impact Assessment
[15] Faith W.L., Arthur A., (1972),Air Pollution, Wiley-Interscience,
[16] Frank L Cross, Howard E Hesketh, (1975),Handbook for the Operation and Maintenance of Air Pollution Control Equipment, Technomic
[17] Harreveld A Ph van, (Nov, 1994), Odour Nuisance: Policy options and regulatory approach, Presented at Chartered institute of environmental health, Welsh Council Weekend Course.
[18] Hesketh H.E., Cross, F.L., (1989), Odour Control including Hazardous/ Toxic Odours, Technomic Publishing Co. Ltd.
[19] Hodge, D.S. (1995) Modelling removal of air contaminants by biofiltration, Journal of Environmental Engineering, Vol.121, No. 1 Jan, 1995, p2132.
$\sqrt{[20]}$ Hong Kong Government Environmental Protection Department, Environment Hong Kong 1992, 1994, 1995
[21] Hong Kong Government, Environmenti . Protection Department, Planning Department (Apr 1991), Environmental Guidelines for Planning in Hong Kong
[22] Hong Kong Government, Drainage Services Department, (1992), East Kowloon Sewerage Improvements and Pollution Control, Kwun Tong and Yau Tong Area, Final EIA Report Apr. 1992
[23] Hong Kong Government Environmental Protection Department (Aug 1992), Sha Tin Transfer Station Study, Balfours International (Asia) Consulting Engineers
[24] Hong Kong Government Environmental Protection Department (Jan 1993), Consultancy Study for Island West Transfer Station, Scott Wilson Kirkpatrick Consulting Engineers
[25] Hong Kong Government EPD (1993), Consultancy Study for Outlying Islands Refuse Transfer Facilities, Initial Environmental Impact Assessment Sept 1993, Aspinwall \& Company
[26] Hong Kong Government EPD (1994), North West New Territories Refuse Transfer Station Study, Initial Environmental Impact Assessment, Mouchel Asia Ltd, ERM Hong Kong
[27] Institution of Environmental Health Officers Working Party, IEHO (Report), (1987) Odous $\therefore \therefore$ m Animal By-Product Plants
[28] Koenig A. (1990), Biofilters for odour control, presented at the Seminar on Biotechnology for Agro-Industrial Wastes Management, Asian Inst. of Tech. Bangkok, Feb, 1990
[29] Leo Beck, New Jersey's Approach to Odour Problems, A recent developments and current practices in odour regulations, controls and technology, edited by David R. Derenzo, Alex Gnyp.
[30] Leson, G., and Winer, A.M. (1991). Biofiltration: An innovative air pollution control technology for VOC emissions. Air and Waste Management Association Journal. 41(8)., page 1045-1054
[31] Moncrieff, R.W. The Chemical Senses 3rd edn
[32] Mott MacDonald (Oct 1995), Sheung Shui Slaughterhouse, Environmental Impact Assessment
[32] Neff C. Richard, (1991) Biological Degradation system for odour control, a paper of: Recent Development and Current Practices in Odour Regulations, Controls and Technology, Air \& Waste Manc gement Association
[33] Nielsen V.C., Voorburg J.H., Hermite P.L., (1985), Odour Prevention and Control of Organic Sludge and Livestock Farming, London ard New York, Elsevier Applied Science Publishers
[34] Ostojic Ned, Richard A Duffee, (1989), Use of Biofiltration for Odour Control, Odour Science \& Engineering, Inc. 57 Fishfry St. Hartford, CT 06120
[35] Parker W. Homer (1977), Air Pollution, Prentice HallInc., Englewood Cliffs, New Jersey
[36] Pope, D., Moss, R.L., (1980), Current Odour Problems and Control Techniques in the United Kingdom, Warren Spring Laboratory, Department of Industry Gunnels Wood Road, Stevenage
[37] Punter P.H., (1986), Odour concentration and Odour Annoyance, Odour Prevention and Control of Organic Sludge and Livestock Farming, edited by V.C. Nielsen
[38] Ray Kapahi and Michael Gross, (1995), Biofiltration for VOC and Ammonia Emissions Control, Journal of Biocycle, February, 1995, page 87-88
[39] Ross Richard D, (1975), Incineration, Handbook for the Operation and Maintenance of Air Pollution Control Equipment, Ed. by Frank L. . Cross \& Hesketh H E
[40] Summer, W., Amer M, (1963), Methods of Air Deodourization, Elsevier Publishing Company
[41] Summer, W., Amer M, (1971), Odour Pollution of Air, Causes and Control, London, Leonard Hill Books.
[42] Toogood, S.J. (1990). Odour Control for the 1990s - Hit or Miss? Journal of IWEM June 1990
[43] U.S. Envirom 'ental Protection Agency, Office of Rearch and Development, Cincinnati, Design Manual, Odor and Corrosion Control in Sanitary Sewage Systems and Treatment Plants, October 1985.
[44] World Health Organisations Yearbook of International Organisations (19681969)

Appendix 1

Sulistance	Hecognition The eshuld!. ррй by volume	Recognition Dercription
Diphinayl sullicte	00047	Buat whbery
f:himol (symuetic)	100	Svee:
Ellyl ocrylote	0.00047	Hor plostic, earilly
Ethyl merciptan	$0.001(0.0003)$	forlliy, sullidy
Ellyy methyl sulitide	(0014)	
fornoldehyde	1.0	1 loy/staw-like, pungern
1 lydrochlotic acid gas	10.0	Prungent
llydrogen sullide flrom $\left.\mathrm{No}_{2} \mathrm{~S}\right)$	10000.510 .0047	Fgay sullide
Hydrogen sullide gas	0.00047	
lsotulonol	2.05	Sweel thusly
Isobutyraldeliyde	0.336	Sweel fuily
Melhonol	100.0	Sweel
2 Methyl. - butonol	023	Sour shorp
Methyl cellosolve	0.40	Sweer otcohol
Melliyl chloride	alowe 10	
Methylene chloride	214.0	
Melhyl ellyl ketone	10.0	Sweet
Mehyl isobulyl kelone	017	Sweel
Methyl mercoplon	(0.001) 0.0021	Sullidy, pungent
Methyt meethaciylate	0.21	Pungenn, sullidy
Monochlorobenzene	0.21	Chlorinoled, moth bralls
Morpholine	0.14	fishy
Nimobenzene	000147	Shise polish, pungent
Porocresol	0.001	lor-like, pungent
Punaylene	0.17	Sweel
Puchlorochliylere	1.64	Chloinmed solvent
Plenot	0.0 .17	Medicinol
Phosgene	10	Hoy- Hike
['iosphine	0.021	Oniony. mustard
P'yricine	0.021	Bum, pmarst, diamine
Sturste	022	
Slyrene (ishlubited)	01	Solverty, ubbery
Slyrene (unimbibiled)	004%	Solventy, rubbery, plosticy
Sullur dichhoride	0001	Sullacly
Sullur dioxide	0.47	
Thiophone	10.0011	
Boluene (lrom coke)	468	fluol, pmengent, solvenily
loluene [from petrolemay]	214	Moth bolls, ubbery
Iolylete disocyonale	211	Medicoled brondoge, pancuent
lichlibroetlylene	21.4	Solventy
Vinyl ocetule	010	Sour shore

$\frac{\text { Substonce }}{\text { Acelaldeliade }}$	Recogmation Ihatishold. prom by volume	Recognition Descriplion
Acelic arid	0.21	
Acetic millydiode	1.0	Green sweel Sour
Acetopherone	0.36	Som acid
Acelone	060	Sweel olmond
Acrolein	100.0	Chemical sweet
Acrylonitile	0.21	Burnt sweel, pungent
Allyl omine	21.4	Onion-gorlic pungenc
Allyl chloride.	28.0	-
	017	Gonlic-onion pung
Allyl moicoplon		green
Aunine, dimealiyl	0016	
Amine, moncmbethyl	0.047	Tisly
Amine limerliyl	0.021	Fishy, pungern
Anmonios	0.00021	「ishy, purgent
Andine.	46.8	Pungen
Benzene	1.0	Pungeni
Benzyt cliloride	- 080	Solvens
Benzyl sullide	0.047	Solvent
Bromitre	0.0021	Sultidy
Butyl cellosolve:	0.047	Bleach, pungent
Bulylene oxide	0.18	Sweel ester
Bulyraldehyde	0.71	Sweet olcohol
Butyric ocid]	0.039	Sweet rancid
Coubon disullide	0.011	Sour
Cobon telachicride (chlominolion ol C_{2})	0.21	Vegetable sullide
Cobbon telachelstrite. (chlonimation ol (II_{4})	21.1	Sweob, pungent
Corbitol solven!	1000	
Cellosolve ocelole	1.10	Sweel musly
Chlord	02.50	Sweel musly
Chlorine	0.047	Sweel
Cyclohexanone	0.314	Bleach, pungens
Dibutyl sullicle	0.21	Sweet shoip
biethytomine	O. 18	
Diellyd sullice	0.498 (0.009)	Tishy
Dielhyl trisullide	(0.006)	
Dimethylocetomide	100011	
Dinelhyllommande	468	Amine, bumb, oily
Dimethiyl sullide	1000	fishy, purigent
Dimethyl lisullide	0001	Vegetchle sullinte
1.4 Uioxane	100011	
1ipherryl ther	5.7	Sween slcoliol
(omatue gisha)	01	

Appendix 2

Diagram I - Sampling Apparatus - - Odour. Testing

Diagram II - Testing Panel - FA Odour Testing_

Diagram IV -Indicating System - Fp i Odour Testing_

Appendix 3

Dear Sir/Madam,

Questionnaire on the Deodorization of

Sewage Treatment Plant. Composting Plant. Abattoirs. Pumping Station, and Refuse Transfer Station

Being a student of the University of Hong Kong, I am conducting resew. h for the dissertation of Mic. in Environmental Management. The theme of my project is the odour control of the sewage treatment plant, composting plant, abattoirs, pumping station, and refuse transfer station in various countries as well as in Hong Kong. Specifically, it will be very useful for my research in collecting information on:
-the number of the sewage treatment plant in your country
-the seriousness on the odour problem
-the area affected by the plants
-the control equipment
-the control legislation
For the research to be successful, your kind cooperation is important. I would be grateful if you would take a few minutes to complete the questionnaire and return it to me on the following address or by fax.

- Flat A, 39/F., Ho Fung Mansion, Riviera Gardens, Tsuen Wan, Hong Kong
- Fax No: (852)2402 8275

If you have any questions about the questionnaire please do not hesitate to contact me.

I appreciate your time and cooperation for participating in this research.

Yours faithfully,

KWAN Yiu-keung

Questionnaire on the Deodorization of

Sewage Treatment Plant, Composting Plant, Abattoirs. Pumping Station, and Refuse Transfer Station

To: KWAN Yiu-keung, John
Fax No.: (852) 24028275
From:
Organisation/Department:
Address:
Fax No:

1. Please indicate the number of plants under different categories, and the seriousness of the odour problem generated by these plants:

(Please classify it into: very serious, serious, moderate, acceptable or nil)
2. What kind of people would be affected by the odour?
I. operators
[passersby
nearby inhabitants
E others, please specify: \qquad .
3. How large in average is the area (inside and outside of the plant) that would be affected by the odour?

Approx. Area: \qquad
4. What percentage of the plant has been installed with odour control equipment?

Percentage: \qquad
5. What kind of odour control equipment was equipped in the concerned plants?
(You can tick more than one)

6．The reasons for those plants without equipping odour control equipment are： （You can tick more than one）
economiclow odour emission
］no sensitive receiver
no statutory requirement
－others，please specify： \qquad ．

7．The reasons for those plants equipping with odour control equipment are： （You can tick more than one）

〔 economic feasiblehigh odour emission
\square sensitive receiver exist
\square statutory requirement
\square others，please specify： \qquad ．

8．How many existing plants（with or without control measures）are planned to lower their odour emissions by incorporating／upgrading the odour control equipment？

Number： \qquad （or in \qquad $\%$ ）

9．How many new plants are planned to lower their odour emissions by incorporating the odour control equipment？

Number： \qquad （or in \qquad $\%$ ）

10．Are there any legislation directly related to the control of odour level inside／outside the concerned plants？
\square yes，please give details： \qquad
\qquad
In o，
if no，is there any other
related code of practice
or general guidelines： \qquad
\qquad
11．Any additional information： \qquad

End

List of Responders:

1. New York State, Department of Environmental Conservation, Division of Water
2. New York State, Department of Environmental Conservation, Division of Solid \& Hazardous Materials (Refuse Transfer Stations)
3. New York State, Department of Environmental Conservation, Division of Solid \& Hazardous Materials (Composting Plants)
4. Florida Department of Environmental Protection
5. Perth, Western Australia, Department of Environmental Protection
6. Texas Natural Resource Conservation
7. State of New Jersey, Department of Environmental Protection
8. Illinois Environmental Protection Agency
9. Republic of Singapore, Ministry of the Environmen,
(The above organisations have returned the completed questioninaires)
10. State of Washington, Department of Ecology
11. Swedish Environmental Protection Agency
12. Der Rat von Sachverstandigen fur Umweltfragen
13. Republik Osterreich Bundesministerium fur Umwelt
14. Israel Export Institute, Environmental Tech Centre
15. Austrian Ministry for Agriculture \& Forestry
16. Umwelt Bundes, Federal Environmental Agency

Appendix 5

New York State Department of Envir Division of Solid \& Hazardous Materials 50 Wolf Road, Albany, New York 12233-72 518-457-6934 FAX 518-457-0629

NOV 170

Mr. John KwaN Yiu-keung
Elat A, $39 / F$., ioi Fung Mansion
Riviera Gardens, Tsuen Wan
HCNG KONE
Dear Mr. KWAN Yiu-keung:
This is in response to -our recen questionnaire regarding the deodourization of sewage treatment plants, composting plants, -nd refuse transfer stations.

The following information represents facilities located in New York state. In addition, I an forwarding you a January 1994 document entitled, Municipal Sewage Sludge Management practices in New York State, produced by the New York State Department of Environmental Conservation; and information on composting facilities located in New York state by Region. New York state consists of nine Regional offices as siown on the enclosed map.

Should you have any questions regaraing the completed questionnaires or the reports, please concact Mr. Robert Mitrey, Assistant Director, at (518) 457-3691.

Enclosures

Questionnaire on the Deodourization of
 Sewage Treament Plant, Composting Plant, Abattoirs, Pumping Station, and Refuse Transfer Station

To: KWAN Yiu-keung, John
Fax No.: (852) 24028275
From: New Vork State Decarment of Environmental Conservdtion Organisation/Deparment: Division of Water Address: 50 wol $=$ Roaci, Albany, New York 12233
Fax No: (518) 485-7786

1. Please incicate the number of plants under difierent categories, and the seriousness
of the odour proolem generated by these plants: 2 - serious
5-moderate

'(Please classify it into: very serious, serious, moderate, acceptable or nil)
2. What kind of people would be affected by the ocour?
\square operators
y passers-by
E nearoy ininabiants
\square others, please specify: \qquad
3. How large in average is the area (inside and outside of tie piant) that would be affected by the odour?

> Varies

Approx. Area: \qquad
4. What percentage of the plant has been installed with ocour control equipment?

Derceniage: \qquad
5. What kind of ocour control equipment was equipped in te concerned plants?
(You can tick more than one)

EX scrubier,	in what mumber.	\%)
- activated carion,	in what nursber. ____ (\%)
EXocher pis specify	in winat auricer. ____ (\%)
improve óperation	in what numioer.	\%)
process chaņe	in what nurnoer.	\%)
	Total	100\%

6. The reasons for those plants without equipping odour conrol equipront are: (You can tuck more than one)

Xeconomic
a low odour emission

- no sensitive receiver
® 0 statuiory requrement
- others, please specify: \qquad .

7. The reasons for those plants equipping with odour control equipment are: (You can uck more than one)

- Deconomic feasible
$区$ high odour emission
E. sensitive receiver exist
- statutory requirement
\square others, piease specify: \qquad .

8. How many existing plants (with or without concol measures) are planned to lowes their odour emissions by incorporating/upgrading the odour control equipment?

Number: 0 (orin__ \%)
9. How many new plants are planned to lower their odour emissions by incorporating the odour control equipment?

Number. \qquad cor in \qquad $\%$)
10. Are there any lezislation directly reiated to the control of odour level inside/outside the concerned plants?
\square yes, please give details: \qquad
\qquad
in
if no, is there any other reiated code oí practice or genera! guidelines:

General muisance provisions of locel lesisia=: operation anc maintenance onnitions of pern:
to discharge.
11. Any additiona: information: \qquad

End

Questionnaire on the Deodourization of Sewage Treatment Plant, Composting Plant, Abantoirs, Pumping Station. and Refuse Transier Station

To: KWAM Yiukeung, John
Fax Nंo.: (852) 24028275

From: New York State Deparment of Environmental Conservation Organisaion/Depannent: Division OESolic a Hazardous Mãerials Address: 50 whl Road, Albany, hew Yorx 12233
Eax Nio: (518) 485-7733

1. Please indicate the number of plants under dineren: categories, and the seriousness of the odour problem generated by these plants:

(Please classify it into: yery serious, serious, woderate, acceptable or nii)
2. What kind of people would be affected by the odour?
x operators
(6) passers-by

- nearoy innabitants
\square others, please specify: \qquad .

3. How large in average is the area (inside and ouside of the plant) that would be affected by the ocour?

Noc known. Can problems tyoically are a probiem for = Approx. Aiez: persons at the facility or those who are imeciately adjacent to the Eacilivy.
4. What percenrage of the plant has been instailed witi odour control equipment?
5. What kind of ocour control equipment was equipped in the concermed piants?
(You can ick more inan one)

I scriber,
$[$ activated carion,
L one pls specity
\qquad
\qquad in what aumbe: \qquad \%) in wha: aumber. in wiai zumber: in wita: number: in wion number.

\%)
\%) The large H ransí stations which er odor-ontrol uti: pertumed misting
*NOTE: OE these 481 Eacilities, 194 are jarge refuse transfer stations accepting more Ghan 50,000 cubic yards or 12,500 tons annually. The remaining are small transfer stations which accept less than 50,000 cubic vards anmually. Ociors are not generally a problem at the small agents Inside the tipping floor are
 twarsier stations.
6. The reasons for those plants without equipping odour control squipment are: (You can tuck more than one)

Qeconomic

- low odour emission
- no sensitive receiver
- no statutorf requirement
- others, please specify: \qquad .

7. The rezsons for those piants equipping with odow control equipment are: (You can uck more than one)
$\square \mathrm{economic}$ feasible
迫 nigh odour emission
式 sensitive receiver exist
X starutory reguirement
O others, please speciî̀: \qquad .
8. How many existing piants (with or without concol measures) are planned to lower their ocour emıssions of incorporatingiupgrading the ocour concrol equipment?

Number: Unknown (or in \qquad $\%$)
9. How many new plants are planned to lower then ociour emissions by incorporating the odour control equipment?

Number Unkow (or in _ \%)
10. Are there any legisiation directly reiated to the contol oi ociour level inside/ourside the concemed plants?

New York Siate's Environmental Conservation Law
© yes, please give details: states that the Department has the power to acor anc promuluam, amend and repeat itres and regulations ariectec at tneprevention and reauc
 State's Paru 350 requations which govem the
no,
in no, is there any other reiated coce of pracrice operation oj =ansier stations inciude a recuire thet processing, tipping, sorving, scorage anc compaction zreas must be located within an encle or general guideines: buildinc. Einemore, the regulations state E. transfer stations and transfer venicles must be cleaned to prevent dozs. The recuilations also state frat ocoss mist de lifectivety controlled 11. Any additionai iniormanom: they do now constitute misances or hazards $=0$

Additional infomation:
End $2 / 2$
The part 360 regulations state that ail putrescible solid waste must be removed from the transfer station whenever transfer containers are fuli, 0 within 7 days of receipt, whichever comes first. This aids in preventing very serious odor problems.

ished by the Puolic Eeatch Council and enforeed by local pubiic hesith agencies. hsue been ineffective becsuse of the diffusion of responsibility and a lack of uniformity in enforcement poilicies.
"In recognition of the need for and the cost of proviaing improvec solid wasie management facilicies, the people of the state approved the envirommental quality bond act of nineteen hundred seventy

Two [Li972 6 658] whici will assite local govemments in finsncing improver Eaciiibies.

Y:
"It is the puruse of this ace luicitat c 399] to assure that solid wasic mato agement is conducted in a saie. sanitaris. eificient economic and environmentalt sound manne: throughou: the $\overline{s i c}{ }^{2}=\frac{1}{3}$ providing a unified reguiawry sames work therefor.'

Cross Reierences

Definitions-
Inactive hazardous waste disposal sires, see section 27-1301.
Industrial hazardous waste management, see secion zi-0901.
Incustrial siting hazardous \#aste facilities, see seccion $21-1101$.
Litter and solid waste control, see section $27-1003$.

Stare aid for implementation of resource recovery and other improvec soid wieste management systers, see section $27-0501$.
Waste Lansporter permits, see seccion 27-0303.

New York Codes, Rules and Regulations
Adoinonal deninitions, see 6 NYCRR 360.1.
Library Rejerences
Healti and Environment $<25.5(5)$.
Ci.S. Health and Environment 3 is 91
et seq., 106 et seq., 131.
§ 27-0703. Powers of the department
The deparment shall have the power to:

1. Adopt and promulgate, amend and repeal rules and regulations governing the operation oi soild waste management Eacilities Such rules and reguiations shall be directed at the prevention or reduction of (a) water pollution. (b) air pollution, (c) noise pollution. (d) oonoxious odors, (e) unsightiy conditions caused by uncontrolled release of litter, (f) infestation of flies and vermin, and otner conditions inimical to the pubiic health, safery and welfare. in promulgating such rules and resuations, the deparment shall gire due regard to the economic and :ecinological feasibility of compl: ance therewith. Any rule or regulation promuigated pursuan: hersto may differ in its terms and provisions as between particuiar types of solid waste managemen: faciiicies and as berween parcoular areas of the seate.
2. Provide technical assistance to municipaiities and other persons engeged in soiid waste management and provide taining for proper operation of solid waste management faciilies.

Questionnaire on the Deodourization of Sewage Treatment Plant. Comoosting Plant, ADatoirs, Pumping Station. and Refuse Transfer Suation

To: KWAN Yiu-keung, Join
Fax No.: (852) 24028275
From: New York State Department o三 Envimomental Conservation OrganisarionDecarmen: Division of Solid a $\mathrm{\alpha}$ Hazardous Materials Address: 50 woIE Road, Alhany, lew York 12233
Fax No: (518) 485-7733

1. Please indicate the number of plants under difinerent caregories, and the seriousness of the odour oroolem generated by these plants:

Sewage Treatment Plant, number. \qquad seriousness ${ }^{\circ}$: Composting Plant, number, 34^{*}, seriousness moderate to problem Ajamoirs, Pumping Siation, number.
\qquad
\qquad seriousness \qquad Raruse Transier Station, number: \qquad seriourness \qquad
(Please ciassify it into: very serious, serious, modeate, acceptable or nil)
*See attached list of facilities.
2. What kind of people would be affected by the odour?
© operato:s
\mathbb{Q} passers-by
区 nearoy ininabitants

- others, please specify. \qquad \rightarrow

3. How large in average is the area (inside and outsice of the piant) that would be affected by the ociour?

Approx Area:
varies
\qquad
4. War percentage of the piant has been instalied with odour cocrol equipment?

Percentage: \qquad
5. What kind of ocour contol equipment was egupped in the concermed plants?

6. The reasons for those piants without equipping odour control equipment are: (You can uck more than one)

Eeconomic

- low odour en. sion
- no sensitive recsiver
- no siatutory requirement

C others, please spesiry: \qquad .
7. The reasons for those plants equipping with ocour conrol equipm.at are: (You can tick more than one)

- economic feasible

X high odour emission
© sensitive receiver exist
© statutory reguirement

- others, piesse specify: \qquad .

8. How many existing plants (with or without concol measures) are planved to lower their ocour emissions by incorporating/upgrading the odour control equipment?

Number: Uniknown (or in \qquad \%)
9. How many new piants are planned to lower their ocour emissiors by incorporating the ocour control equipment?

Nurnoe:- Unknown (or in \qquad \%)
10. Are there any lezisiation directly related to the controi of ociour level insideloutside the concerned plants?

- no,
if no, is there any other reiated cocie of practice or genemi guidelines: \qquad

Questionnaire on the Deodorization of
 Sewage Treatment Plant, Composting Plant, Abattoirs. Pumping Station. and Refuse Transfer Station

To: KWAN Yiu-keung, John
Fax No.: (852) 24028275
From: Richard Addison
Organisation Department: Florida Department ofenviconmatal Protection Address: 2600 Blair Store Pood Tullakasseefl $32399-2400$
Fax No: $904-921-6385$

1. Please indicate the number of plants under different categories, and the seriousness of the odour problem generated by these plant:

State of Florida, USA
Sewage Treatment Plant, number. 3457 , seriousness ': Varies by plant Composting Plant, number: \qquad seriousness : Veeries by plant Abattoirs, number: whinaun , seriousness: unknown
 Refuse Transfer Station, number: vitrain seriousness: Untread
'(Please classify it into: very serious, serious, moderate, acceptable or nil)
2. What kind of people would be affected by the odour?
operators
Z passersby
X nearby inhabitants

- others, please specify: \qquad .

3. How large in average is the area (inside and outside of the plant) that would be affected by the odour?

> Approx: Area: Varies by plant
4. What percentage of the plant has been installed with odour control equipment?
Percentage: Unknown, we do not track this.
5. What kind of odour control equipment was equipped in the concerned plants?
(You can tick more than one) Unknown, we de nut frack this.

6. The reasons for those plants without equipping odour control equipment are: (You can tick more than one)

Z economic
low odour emission
no sensitive receiver
\$ no statutory requirement
o others, please specify: \qquad .
7. The reasons for those plants equipping with odour control equipment are: (You can tick more than one)
economic feasible
必 high odour emission
sensitive receiver exist
\& statutory requirement - others, please specify: \qquad .
8. How many existing plants (with or without control measures) are planned to lower their odour emissions by incorporating/upgrading the odour control equipment?

Number: \qquad for in \qquad \%). Unknown, we dunant track this
9. How many new plants are planned to lower their odour emissions by incorporating the odour control equipment?

Number: \qquad for in \qquad \%) unknown we dunottrack this
10. Are there any legislation directly related to the consol of odour level inside/outside the concerned plants?

X yes, please give details: Rules attached. See pages 22-23 and 27-28.

こ no,
if no, is there any other
related code of practice
or general guidelines: \qquad
11. Any additional information:
 in Snotury Sculerase Systems uh Trontrant plats" is Hiteched tor your vex.

Questionnaire on the Deodourization of

1. Please indicate the number of plants under different categories, and the seriousness of the odour problem generated by these plan. ${ }^{+5}$:

'(Please classify it into: very serious, serious, moderate, acceptable or nil)
2. What kind of people would be affected by the odour?
```
    D Operators
    bassers-by
    Z nearby inhabitants
    Z otners, please specify:
```

\qquad .
3. How large in average is the area (inside and outside of the plant) that would be affected by the odour?

Approx. Area: 500 m - 1000 M
4. What percentage of the plant has been installed with odour control equipment?

$$
\text { Percentage: } \quad 0 \%
$$

5. What kind of odour control equipment was equipped in the concerned plants?
(You can tick more than one)

6. The reasons for those plants without equipping odour control equipment are: (You can tuck more than one)

3 economic
Tow odour emission
no sensitive receiver
Z no statutory requirement
I others, please specify: \qquad .
7. The reasons for those plants equipping with odour control equipment are: (You can tick more than one)

8. How many existing plants (with or without control measures) are planned to lower their odour emissions by incorporatingfupgrading the odour control equipment?

Number: \qquad NIL (or in \qquad \%)
9. How many new plants are planned to lower their odour emissions by incorporating the odour control equipment?

Number: $\mathrm{N}:$-_, (or in ___ \%
10. Are there any legislation directly related to the control of odour level inside/ourside the concerned plants?

- yes, please give details: \qquad
no.
if no, is there any other related code of practice or general oudelines:

11. Any additional information: Vectarlan fonirow Mortal Protection Ahtideroity Has mane conarehausus information.
End

Questionnaire on the Deodorization of

Sewage Treatment Plant, Composting Plant, Abattoirs, Pumping Station, and Refuse Transfer Station

To: KWAN Yiu-keung, John
Fax No.: (852) 24028275
texas natural resource
CONSERYETCY COMMISSION
P.O. Box 13087

Austin, Texas 787113087

From: Municipal Permits
OrganisationDepartment: Texas Natural Resource Conservation .üress: P.O. Box 13087
Fax No: 512 239-4430

1. Please indicate the number of plants under different categories, and the seriousness of the odour problem generated by these plants:
Sewage Treatment Plant, number: 2430 , seriousness : moderate Composting Plant, number: \qquad , seriousness : Abattoirs, Pumping Station, number: \qquad seriousness ": Refuse Transfer Station, number: 10,170 , seriousness :
'(Please classify it into: very serious, serious, moderate, acceptable or nil)
2. What kind of people would be affected by the odour?

Z operators

- passersby
\mathcal{X} nearby inhabitants
= others, please specify: \qquad

3. How large in average is the area (inside and outside of the plant) that would be affected by the odour?

Approx. Ares: 500 Ft
4. What percentage of the plant has been installed with odour control equipment?

5. What hand nf odour control equipment was equipped in the concemed plants?
(You can act more than one)
x somber.
aculated carbon.
in what number: \qquad (i $\%$)
Xohna- els spuciti! \qquad
in what number: \qquad 1%)
Nun- piss sicily ohm . in what number: \qquad 0.01
Resign. in what number:
Collection in what number: _ 10
System
Tush uru.
6. The reasons for those plants without equipping odour control equipment are: (You can tick more than one)

J economic
\square low odour emission
$\not \approx$ no sensitive receiver
] no statutory requirement
0 others, please specify: \qquad .
7. The reasons for those plants equipping with odour control equipment are: (You can tick mort 'han one)
economic feasible

- high odour emission
sensitive receiver exist
期 statutory requirement
0 others, please specify: \qquad .

8. How many existing plants (with or without control measures) are planned to lower their odour emissions by incorporati..g/upgrading the odour control equipment?

Number \qquad (or in \qquad \%)
9. How many new plants are planned to lower their odour emissions by incorporating the odour control equipment?

Number: 53 (or in \qquad $\%$)
10. Are there any legislation directly related to the control of odour level inside/outside the concerned plants?

In o,
if no, is there any other related code of practice
or general guidelines: \qquad
11. Any additional information: \qquad

5.2.6 Siphons

Siphons, also called inverted siphons or depressed sewers. are used to convey wastewater under streams or highways, conduts or other obstructions to the normal sewer grade line. and to regain as much elevation as possible after passing the obstruction. Siphons are normally limited to pipe sizes greater than 20-cm ($8-\mathrm{in}$) diameter. Sewage in siphons is under pressure, since the conduits are below the hydraulic gradeline. Because the siphonremains full even during periods of no flow, it is a porential site of significant sulfide generation and odor reiease.
Methocs of controlling sulfide generation that would oe appliczble to siphons were discussed in Chapter 3. These iechniques include improving the oxygen balance by air or oxygen injection, or by addition of chemicals to oxidize or prectpitate the sulfide or prevent its formation.

Siphon design must consider the potential for odor release. Fositive pressure develops in the atmosphere upstream of the siphon due to the downstream movement of air induced by the wastewater flow. Air inus tencs to exhaust from the manhole at the siphon inlet and may escape in large amounts from small openings, such as pick holes in manhole covers. At less than maximum flow, wastewater dropping into the inle: may cause turbulence and odor release.
One technique that has been successitully used to minimize odor release at siphons is the use of air jumpers. These are pipes that take the air off the top of the inle: structure and convey it to the end of the siphon. in most cases, air jumbers run parallel to the siphon, although the pipe can be suspended above the hyciraulic grade line. Provisions should be made to drain the air jumper to periocically remove accumulated condensate. Usually, the Diameter of the air jumper pipe is approximately one-half that of the siphon (5). Solids deposition is another potential problem and siphons should normally be designed for velocities of $0.9 \mathrm{~m} / \mathrm{s}(3.0 \mathrm{it} / \mathrm{s})$ to prevent solids depcsition and subsequent odor generation. In some cases, mutiole siphon lines are insialled to ensure adequata veiocities during the early design lifetime of ihe sysiam. In these instances, the unused sewer fine may be used as the air jumper line during ine early design period when flow is small and sulfide generation may be a proolem.

5.3 Ventilation of Sewers

5.3.1 Objectives of Vantilation

Ventilation of sewers is oten undertaxen for a variety of reasons. For the most part, only the control of odors is prac:ically acnievable with ventiation. Some of the reasons ventilation has been attemctec are discussed here.
5.3.1.1 Increasing the Oxygen Content of the Sower Atmosphere
The oxygen content of the sewer atmosphere does not change significanily as a result of the septicity of the wasiewater. In partially filled sewers, rise and fall of the liquid level results in displacement and replacement of air, and there is normally a downstream flow of air due to a drag effect berween the alr-sewage interiace. Oxygen concentrations in such sewers are rarely less than 90 percent of normal. If oxygen concentrations are above 90 percen: of normal, ventilation is unlikely to make a significant difference in the oxygen balance of the stream.

5.3.1.2 Reducing the Atmospheric $\mathrm{H}_{2} \mathrm{~S}$ Concentrations

Although it would seem ieasible to ventilate sewers to reduce the atmospheric sulide concentrations and thus control corrosion, this approach has little practical value. In order to have measureable results, complete replacement of the sewer atmosphere with ireshair would be recuired at irequentiniervals. Even if this approach were economical, there would be the problem of disposal of large volumes of malodorous air.

5.3.1.3 Drying the Walls of Sewers and Other Structures

The oxidation of hydrogen sulfide gas to sulfuric acid does no: oceur if the surface is dry, since moisture must be present for bacterial oxidation of $\mathrm{H}_{2} \mathrm{~S}$. Ventilation has deen used with the objective of drying sewerwalls. Thistiethwayte estimated thar when the relative humidity of the sewer atmosphere exceeds 80:0 25 percent, sumifient moisture will be present on the walls to suppori bacterial activity ($\overline{5}$). Thistlethwayte aiso propeses a design procedure iorventilation of sewers to zontrol humidity, but indicates that in most cases this approach is not practicable. This is due to the rapic increase in relative humicity of ventiation air with flow along the sewer, the large number of ventiation stations required, and the significant increase in operation and maintenance costs. Fomeroy a!so incicates that this approach is imprac:tal for year-round protection for even tyoical sewe: בistances jetween manholes (i).

5.3.1.4 Proventing Lethal Atmospheres

Por:3bia ians or siowers are ofen used to ventilate manholes before workers enter. This is acceprable practice for locailzed conditions, provided other normaisaiety prosedures are followed. However, it questionable as :o whether this practice wol provide a saie environmeni between manhoies. It not ieasibla io ventilate large sections of a sew system suficienty io assure a saie environment i sewer workers.

5.3.1.5 Preventing Explosive Atmospheres

 Explosions in sewers generally result from the presence of large amounts of volatile hydrocarbons or from leaking narural gas mains. Only under very unusual conditions do explosions result from accumulation of sewer gases. Because of the unpredictable causes of exolosions and the conditions under which tney occur, it is unlixely that ventilation could assure protection from explosions in a wastewater collection sysiem.
5.3.1.6 Controlling Odor Emissions

Sewer ventilation can withdraw malodorous air at one doint in order to prevent odor emissions at other locatuons. Normally, contaminated air must undergo :reatment oy one or more of the techniques discussed in Chap-ar 4. Ventilation is often practiced at wastewater treatment plants, where air is withdrawn at the downstream terminus of the sewer (plant headworks) and either treated separately or piped to existing biological stabilization processes for removal of odors. Although most other possible objectives have not been achieved by practical levels of ventitation alone, control of odor emissions can be effectively served by continuous ventilation.

5.3.2 Methods of Ventilation

Ventilation of a sewer can occur through both natural and mechanical means. Virtually all sewers incorporate some method of natural ventilation. Mechanical ventilation, on the other hand, is normally emoloyed only in response to complaints of odor emissions from a portion of the collection system following the original design. The two methods are cilscussed below.

5.3.2.1 Natural Ventilation

Collection systems in the United Siates do not normally incorporate special vents or hardware to assis: in natural sewer ventilation. Rather, manholes and building vents are generally considered adequate to keep sewers sufficiently ventilated (6).
Natural ventilation occurs from the following forces (5) (3).

1. Change in barometric pressure along the sewer
2. Wind velocities pasi vents

3 . Frictional drag of wastewater on sewer air
4 . Rise and fall of the wastewater level in the sewer
5. Relative density differences of sewer air and outside air
The degree of natural ventilation which occurs in a sewer is difficult to predict, since fluctuations in the above variables may change both the direction of movement and velocity of the air contained in the sewer.
Whereas no special provisions are normally made to ennance natural ventilation of sewars in the United

Stares, special ventilation systems are routinely incorporated inio sewer designs in the United Kingdom and Australia (5). The reason for this is that collection systems designed in the United Kingdom and Australia have rypically incorporated "boundary traps" or "running traps" at building sewers or house laterals, which effectively prevent the transfer of air between the sewer and building vents. Since the builoing vent is no langer a source of ventiation air, induct and equct stacks are placed at various locations in the collection sustem to allow ar movement into and ou: of ine sewer. Research on natural sewer ventilation systems is discussed in Reierences 7 and 8, and deiailed design procedures Sor such ventiation systems ä̀ dresented in Reierence 4 .

5.3.2.2 Mechanical Ventilatic.:

Mechanica! ventilation may de employec where a constant veiocity and direction oi air how is desired. This may be neressary where odor emissions from sewers musi be controlled, as in residential neighborhoods, or where hydrauile conditions that occur in siphons or surcharged sewers result in stagnant air pockets with reduced oxygen contents. Mechanical ventilation may also be employed ai headworks of wastewater ireatment plants in order io convey malodorous sewer gases :o odor control sysients.
Figure 5-9 shows two examples of the use of mechanical ventilation for odor control in Austin, Texas(10). Ai Williamson Cieek, odors escaping irom septic wastewater entering the wet well necessitated sealing of the wet well and upstream mannole to allow with drawal of air from $5,980 \mathrm{~m}(19,600 \mathrm{ft})$ of $106-\mathrm{cm}(42-\mathrm{in})$ diameter concreie outiall line. A 7.1 $\mathrm{m}^{3} / \mathrm{min}$ (250-scim) blower was used to remove odorous gases irom ine sewer and discnarge them to an aerared siabilization oonc. This approach was successiul in controlling odors from the system.

A similar approach was used for the Wainut Creek system. This was a toial gravity sysiem which included a siphon ior convaying wastewater under Wainut Creek. Two $14.2-\mathrm{m}^{3} / \mathrm{min}(500$-scim) blowers wers used to remove odorous gases from 3.200 m $: 10.500$ it) of concrete sewer at a sealed manhole upstream of the sionon. The blower discharged the gases tmrough air lift pumos in the aeration basin of the treament plant to achieve betier mixing of the iank contents and absorption and oxication of the odorous =omponents of ine gas in the agrated liquid.

Ventilation of oumping siations is part oi normal design procedures for these structures. A minimum of i2 air changes per hour is recommended fo continuously ventilated wet wells and 30 air change per hou for intermittentiy ventilated we: wells. minimum of 5 air changes per hour is recommende for continuousiy yentilated ory wells and 30 ai

Figure 5-9. Forced dratt ventliation for odor control, Austin, TX (9).

b) Ventiation System at Walnut Creex ix
changes per hour for intermittently ventilated dry wells and other below grade structures (11).

5.4 Selection of Materials

Materials seiection is a critical aspect in design of wastewater collection systems in which sulfide generation is likely to pose probiems. The additional expense of using materials with greater degree of corrosion resistance may be justified by the cost savings for replacement or rehabilitation of deteriorated structures at some later date. The following discussion describes the various materials used in collection sysiems, with particuiar emphasis on the corrosion-resistant properties of each material.

5.4.1 Pipo Matarials

If sulfide is expected to be present in sufficient quantities to cause corrosion, consideration must be
given to the use of pipe materials with higher degrees of corrosion resisiance. Design considerations in selecting such materials are (1):

1. Availability of the materials in the pipe sizes required
2. Minimum and maximum levels of sulfide expected in the wastewater
3. Factors other than acid resistance of the pipe fabrasion iesistance, stress-corrosion resisiance, load-bearing strength, and other durability considerations)
4. Hydrauiic characteristics of the materials undeconditions of actual use
5. Other advantages or disadvantages of th material (easa of installation, resistance infiltration, fiexibility, etc.)
6. Expected future service requirements
7. Relative cosis vs. expected service lifetimes , various kincs of dipe

Questionnaire on the Deodourization of

Sewage Treatment Plant. Composting Plant. Abattoirs, Pumping Station. and Refuse Transfer Station

To: KWAN Yiu-keung, John
STATEOF NEW JRRSEY
Fax No.: (852) 24028275 DIVISION OF ENVIFONMENTAL QUALTTY CNO27 TRENTCN. NEW JEASEY 08625-027
From: Max Friedmar
 Address: \&ol East STATE STREET TRENTON, NJ OSb2b Fax No:

1. Please indicate the number of piants under different categonies, and the seriousness of the odour problem generated by these plants:

(Please classify it into: very serious, serious, moderate, acceptable or nil)
2. What kind of people would be affected by the odour?

> X operators
> \boxed{Z} passers-by

X nearoy innabitants
II others, please specify: \qquad .
3. How large in average is the area (inside and ourside of the plant) that would be affected by the odour?

Approx. Ara: DEPENDS ON SIユE OF S:TE
4. What percentage of the plant has been installed with odour control equipment?

Percentage:

$$
\begin{aligned}
& \text { Sowast Trisunct 1070 } \\
& \text { Compost Pimul } 10027 . \\
& \text { Pump stition 257. } \\
& \text { Trimster. STAywioc } 70
\end{aligned}
$$

5. What kind of odour control equipment was equipped in the concemed plants? (You can tick more than one)

6. The reasons for those plants without equipping odour control equipment are:
(You can tick more than one)
Deconomic
K low odour emission
S<no sensituve receiver

- no statutory requirement

II others, please specify. \qquad .
7. The reasons for those piants equipping with odour control equipment are: (You can tick more than one)

Jeconomic feasible
必high odour emission
\% sensitive receiver exist
功 statutory requirement
others, please specify: \qquad .
8. How many existing plants (with or without control measures) are planned to lower their odour emissions by incorporating/upgrading the odour control equipment?

Number: ___(or in 10%)
9. How many new plants are planned to lower their odour emissions by incorporating the odour control equipment?

Number: \qquad (or in 100% \%)
10. Are there any legislation directly related to the control of odour level inside/outside the concemed plants?

X yes, please give details:

In no,
if no, is there any other
related code of practice
or general gudelines: \qquad

November 30, 1995

John Yiu-keung Kwan
Flat A, 39/F, Hal Fung Mansion
Riviera Gardens, Tsuen Wan
Hong Kong
Dear Mr. Kwan.
Your recent questionnaire on odor problems at sewage treatment plants, compost sites, waste transfer sites and other environmental areas is enclosed. Our staff completed the questions for only those areas over which we have jurisdiction. We do not keep records on sewage pumping stations because of the number of them in Illinois.

All of the data provided is for the State of illinois only. We hope this provides meaningful input into your research. If you need clarification contact Tom McSwiggin of our staff.

Sincerely,
Many An Hade.
Director
MAG:TGM:med
Enclosure

Questionnaire on the Deodourization of Sewage Treatment Plant, Composting Plant, Abattoirs, Pumping Station, and Refuse Transfer Station

To: KWAN Yiu-keung, John
Fax No. (852) 24028275

```
From: Thomas G. McSwiggin, Manager, Permit Sertion, DWPC
Organisation/Department: Illinois Environmental Protection Agency
Address: 2200 Churchill Road, Sprinjileld, IL 52794-9276
Fax No. 217/782-9891
```

1. Plesu: indicate the numoer of planu under difinerent categones, and the seriousness of the odour problem gene ated by these plants:

2. What kind of people would be affected by the odour?
\& operators
送 passers-by
© nearby inhabitants

- others, prease specify: \qquad $-$

3. How large in average is the area (inside and outside of the plant) that would be affected by the ocour?

Approx. Area: \quad So. Mile
4. What percentage of the plant has been installed with odour control equipraent?

Percentage: $\frac{\text { Onlv } 4 \text { or } 5 \text { sewage Plants have odor control equipment }}{\text { See below for compost and refuse iransfer site }}$
5. What kind of odour control equipment was equipped in the concemed plants?
(You can tick more than one)

6. The reasons for those plants without equipping odour controi equpment are: (You can tuck more than one)
$\underset{\sim}{x}$ economic
$\widetilde{\alpha}$ low odour emission
no sensitive recerver
$\bar{\Sigma}$ no statutory requirement
I others, please specify:
7. The reasons for those piants equipping with odour control equpment are: (You can tick more than one)

Eeconomic feasible
\square high odour emission
\mathcal{Q} sensitive receiver exist
\square statutory requirement

- others, please specify: \qquad .

8. How many existing plants (with or without control measures) are planned to lower their odour emissions by incorporating/upgrading the odour.control equipment?

Number: \qquad 0 (or in \qquad $\%$)
9. How many new plants are planned to lower their odour emissions by incorporating the odour control equipment?

Number: ? (or in ___ $\%$)
10. Are there any legisiation directly related to the control of odour levei inside/outside the concemed plants?
$\$$ yes, please give details: Setback requirements from recedtors

Eno,
if no, is there any other
related code of practice
or general gudelines: \qquad
11. Any additional infomation: This questionnaire covers both sewage treatment and solid wastes, which have different prodems

SEW/32.7

11 Dec 95

Mr Kwan Yiu-Keung
Flat A, 39/F, Hoi Fung Mansion
Rivera Gardens, Isuen Wan
Hong Kong

Dear Sir

QUESTIONAIRE ON DEODOURISATION

I refer to your letter on the above subject.
2. We are pleased to return the questionnaire on our Sewage Treatment Works and Pumping Stataion and Refuse Transfer Station.
3. We hope the information given are sufficient for your research. Should you need further information, please free feel to write to us.

Yours faithrully

LOO EAK JAN
for HEAD
SEWERAGE DEPARTMENT

Questionnaire on the Deodourization of

Sewage Treatment Plant, Composting Plant, Abattoirs, Pumping Station, and Refuse Transfer Station

To: KWAN Yiu-keung, John
Fax No.: (852) 24028275
From:
Organisation/Department:
Address:
Fax No:

1. Please indicate the number of plants under different categories, and the seriousness of the odour problem generated by these plants:

Wage Trea	mber	6	seriousness	Moderate
Composting Plant,	number:	-	seriousness	
Abattoirs,	number:	-	ious	-
Pumping Station,	mber:		ou	Mode
Refuse Transfer Station,	number:		erious	Acceptabe

-(Please classify it into: very serious, serious, moderate, acceptable or nil)
2. What kind of peopie would be affected by the odour?
\square operators
[0 passers-by
Q nearoy inhabitants

- others, please specify: \qquad .

3. How large in average is the area (inside and outside of the plant) that would be affected by the odour?

Approx. Area: \qquad
2.8ha
4. What percentage of the piant has been installed with odour control equipment?

5. What kirid of odour control equipment was equipped in the concemed piants?

6 The reasons for those plants without equipping odour control equipment are (You can tuck more than one)
economic
\checkmark low odour emission
\square no sensitive receiver
〕. no statutory requirement
of others, please specify \qquad
7 The reasons for those plants equipping with odour control equipment are (You can tuck more than one)

- economic feasible
t' high odour emission
\square sensitive receiver exist
[1 statutory requirement
[] others, please specify \qquad
8 How many existing plants (with or without control measures) are planned to lower their odour emissions by incoroorating/upgrading the odour control equipment?

Number \qquad $(\operatorname{orin} 100 \%)$

9 How many new plants are planned to lower their odour emissions by incorporating the odour control equipment? No new plants beans planned y t t Number NA (or in _ \%)

10 Are there any legislation directly related to the control oi f odour level inside/outside the concemed plants?

11 Any additional information \qquad

End
$2 / 2$

Octoi $=530,1995$

Mr. KWAN Yiu-keung
Flat A, 39/F., Hoi Fung Mansion
Riviera Gardens, Tsuen Wan
Hong Fiong
Dear Mr. KWAN Yiu-keung:
This letter is in response to your request for information on odor problems and controls from various facilities in the state of Washington.

As a matter of prionity and due to resource limitations, the Deparment of Ecology does not keep a data base on the odor problems and the regulatory actions taken to control them. The state of Washington has water and air quality standards which require that aesthetic values shall not be impaired by the presence of materials or their effects which offend the senses of sight, smell, touch, or taste. These standards apply to the municipal or industrial facilities.

Generally, design of such facilities incorporates provisions that will eliminate or reduce odors, or they are located in areas that present little or no odor problems. Where odors are detected from a sewerage system, they are usually reported to the local public utility deparment or, in the case of an industrial operation, to the faciity manager. Usuaily, the utiilty deparment or the facility manager will act to eliminate the source and there is no need for a regulatory action against the party responsible. However, for a persistent odorous source, removal of which requires major planning and investment, a regulatory order may be issued to ensure that the public entity or the facility manager responsible will eliminate the source in a timely manner.

Recently, in response to relatively new air pollution control requirements, a few large wastewater treatment facilities, which are primarily located in densely populated areas, are taking steps to control the emission of Volatile Organic Compounds (VOCs). Although these requirements primarily target VOCs, steps taken to controi their emission (e.g., coilecting and treating the air from some unit processes) will also reduce the release of odorous compounds from these faciiries.

[^0]Swedish Environmental
Protection Agency
Infrastructure Department
Datum
SNV:1 वumsercmatior
Water Management Section
1996-01-10
622-7003-95 SV
Ms Kajsa Sundberg, MS Sc
$\mathrm{Tel}+46-86981216$
Fax $\div 46-86981433$
e-mail kas@environ.se

KWAN Yiu-keung
Flat A, 39/F. Hoi Fung Mansion
Riviera Gardens. Tsuen Wan
Hong kong

Dear Sir/Madame,
As response to your letter sent to the Ministry of Environment we can send you the following information.

In Sweden we have about 8900000 inhabitanss and just over 1000 waste water treament plants constructed to treat sewage water from more than 200 persons.

It does exist problems with odour in the surroundings of waste water treatment plants, but it is not very common. When there are problems, the problems are solved according to the swedish legislation, the Environment Protection Act. That means that the owner of the plant, which normally is the municipal, installs for instance a biological filter or a scrubber, to reduce or eliminate the odour in the surroundings of the plant.

We have found that the use of activated carbon to reduce odour from waste water treatment plants is not very effecrive.

The control of odour from waste water trearment plants is performed according to the Environment Protection Act and the Healch Protection Act.

Y゙ours sincerely,

Der Raf vo Sachverständigen für Umwelffragen

Der Rot vo Sachverstándigen fur Urmeltragen - 65180 Wiesbaden
rifs.MI. KWAN Yiu-keung
Flatiron, 39/F., Ho Fund Mansion
Riviera Gardens, Isuen War,
Hong Kong

Geschäfsstelle
Posifach
65180 Wiesbaden
Telefon-Durchwahl (0611) 754 210-12
Telefox (0611) 731269
30. Oktober 1995
NA

Your request for information dated 17.10.1995

Dear Ms. Mr. KWAN Yu-keung,
unfortunately the Council of EnvironmentalAdvisors has no information about the topic you are working on. Therefore we sent your request to the Federal Environmental Protection Agency (Umweitbundesamt) from where you will probably get some information.

Yours sincerely

i.A. Nicola Albus

REPUBLIK ÖSTERREICH
Bundesministerium für Umwelt
SEKTION III
Zn. 43 3803/14-III7/95

To
M- KWAN Yiu-keung
Fiat A, 39/E., Moi jung Mansion
Riviera Gardens, Tsuen Wan,
Hong Kong

A-1010 Wien, Stubenbaste: 5
Teleion: (0222) $51522-0$
Durchwahl: 3422
Telefax Ni. (Sektion III): (0222) $51522 / 7502$

DVR: 0441473
Sachoearbener: Glantschngg
Wien, am 28. November 1995

Dear Mr. Kwan Yiu-keung!

Referring to your lent., concerning waste water treatment in Austria, we can tell you, that the ministry of environment is not competent The competent ministry in this case is the ministry of agriculture and forestry. We transmitted your letter to the competent ministry.

The acres of this minisuy is:
Ministry of agriculture and forestry
Subenring 12
1010 Vienna
Auscina
With best regards
on behalf of the federal minister
MR Dipl. -Ing. Doleisch

14/11/95
115150.17
AE (VG)

Mr KWAN Yiu-keung
fay \# 00-852-240282\%
HONG KONG

RE: YOUR LETTER + QUESTIONNAIRE REG DEODOURIZATION

Unfortunately, this information is not available in mi institute.
I st .t your questionnaire to the ministry of the Environment, endorsed to Dr. Michael -Graver
Director of the Air Quality Dpt
FOB 34033 - JERUSALEM 95464 - ISRAEL

Best regards,

Appendix 6

Summary of the questionaire survey from overseas countries on the deodouization:

Question	Responders								
	1	2	3	4	5	6	7	8	9
la) Quantity of plants:									
- Sewage Treatment Plam,	592	-	-	3475	200	2430	50	1400	0
- Composing Plant.	-	-	34	6	-	90	5	80	-
- Abattoirs,	-	-	-	-	100	-	-	-	-
- Punping Station,	-	-	-	-	1000	21100	100	-	134
- Refuse Transfer Station,	-	481	-	-	5	10170	40	50	1
1b) The seriousness of the odour problem:									
(serious; moderale, acceptable)									
- Sewage Treatment Plant.	accept	-	-	-	moderate	moderate	very.serious	mod'ate	mod'ate
- Composing Plant,	-	-	moderate	-		serious	very serious	mod'ate	
- Abatloins,	-	-	-	-	moderate				
- Pumping Station,	-	-	-	-	ni\}	accept	moderate		mod'ate
- Refuse Transfer Station,	-	moderate		-	ni!	accept	serious	mod'ate	accept
2 What kind of people allected by the									
odour?	x	x	x	x	x	-	x	x	-
- operators	x	x	x	x	x	-	x	x	x
- passers-by	-	x	x	x	x	x	x	x	x
- nearby inhabitants	-	-	-	-	\cdots	-	-	-	-
- others									
3. How large in average is the area affected by the odour?	Varied	-	Varied	-	$\begin{aligned} & 500- \\ & 1000 \mathrm{~m} \end{aligned}$	500 ft	-	1 sq mile	28 ha
4. What $\%$ of the plant is installed with odour control equipment?	-	40-50\%	-	-	10\%	10\%	60\%	-	-

Question	Responders								
	1	2	3	4	5	6	7	8	9
5. Kinds of odour control equipment equipped - scrubber - activated carbon - others:	$\begin{aligned} & 1 \\ & 0 \\ & \text { operation } \\ & \text { process } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { perfumed } \\ & \text { ninist } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { Atomizer } \end{aligned}$		$\begin{aligned} & 5 \% \\ & 1 \% \\ & \text { incineraor } \end{aligned}$	9 O\&M design system	60\% 10\% biofilter. 30\%		100\%
6. Reasons for those plants without equipment - economic - low odour emission - no sensitive receiver - no statutory requirement	$\begin{array}{\|l\|} \hline x \\ - \\ - \\ x \\ \hline \end{array}$	x	x	$\begin{gathered} \mathrm{x} \\ \mathrm{x} \\ \mathrm{x} \\ \mathrm{x} \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline x \\ x \\ x \\ x \\ \hline \end{array}$		$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	x
7 Reasons for those plants with equipmem: - economic feasible - high odour emission - sensitive receiver exist - statutory requirement	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x . \\ & x \end{aligned}$	\bar{x}	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & - \\ & x \end{aligned}$	x
8 How many existing plants are phanned to lower their odour emissions by incorporating/ upgrading the odour contol equipment?	-	-	-	-	-	212	100\%	-	6
4. Flow many new plants are planned to lower thein odour enissions by incorporating the odour control equipment?	-	-	-	-	-	53	100\%	-	0
10. Are there any legislation/code of practice directly related to the control of odour level inside/ouside the concerned plants?	lecal legislation	part 360 regulation (*)	part 360 regulation (*)	$\begin{aligned} & \begin{array}{l} \text { mule } 62- \\ 600 \\ \quad \text { (*) } \end{array} \\ & \hline \end{aligned}$	cop for abatteir	buffer zone	$\begin{aligned} & \text { NJAC } \\ & 7.27-5 \end{aligned}$	setback	$\begin{aligned} & 1 \mathrm{~km} \\ & \text { buffer zone } \end{aligned}$

(*) : Legislation or code of practice was provided by the responder

Appendix 7

Suestiomajre on the Deodorization of

Refuse Collection Point \& Abattoir

A

To: KWAN Yiu-keung
Fax No.: $2402 \cdot 8275$
From: Mr. Can Chi-kuen
Crganisaxtor/Deparment: Debar Services Department=

Fax No: 25301368 Tel: 28675290

$$
\begin{aligned}
& \text { Refuse Collection Point, quantity: } \\
& \begin{array}{l}
\text { Abattoir, } \\
\text { quantity: } \\
\hline
\end{array}
\end{aligned}
$$

(The information given below applies to union area only)

1. How z any Refuse Collection Point \& Abattoir ares there in Hing Kong:
2. Will there be any odour problem in such plants?

3. If no, Why? The reason is:
\qquad no odour emission at all
\qquad large buffer distance between the receptor ventilate the odour to high position for dispersion
\qquad it was totally enclosed
4. If there is odour problem in these plants have mere any odour control equipment in these plants?

5. What kind of odour control method is used in the KCPO . And please indicate the total quantity used in $R C P$ \& Abattoir of Hog Kong. (You can tick more than one)

E Larg: ouffer distance
R.C.P. \qquad Abathoir
E other, pls specify \qquad in what quantity. \qquad
\qquad in what quantity. \qquad
\qquad
6. The reasons for those plants without equipping odour control equipment are:
(You can tick more than one)

| economic
 low odour emission
 no sensitue receiver
 no staturory requirement
 others, please specify: | R.C.P. Abattoir |
| :--- | :--- | :--- |

7. The reasons for those plants equipping with odour contol equipment are:
(You can tick more than one)

	R.C.P.	Abattoir
economic feasible		
bigh odour emission	x	χ
sensitive receiver exist	$\underset{\sim}{\chi}$	
statutory requirement	-	
others, please speciff.		

8. How many numbers of the existing piants (with or without fontrol measures) are pianned to lower their odour emissions oy incorporatingurperading the odour control equipment?
R.C.P.
Quantry: \qquad
Áoattoir Quantry: 1 (STA 3PP)
9. Kow many pew piants are planned to lower their odour enissions in incorporating the odour control equipment?

RCP.
Quantity: i?

Abattoir
Quantrity $=3$
10. Are there any jegisiation directly related to te contul of odour level inside/ourside the concerned plants?

- ves piease give cetails: \qquad
2no
if no, is there any otier related code of practice
or general guidelines: \qquad $=0$

11. Any additional information: \qquad nin

Questionnaire on the Deodounization of
 Refuse Collection Point \＆Abatoir

To：KWAN Yiu－keung
Fax No．： 24028275
From：：：n．こここ ニニミーショ

FaxNo：ミこここ ここご Tel：こうごごここ

1．How many Refuse Collection Point \＆Abattoir are there in Hong Kong：

```
シュ ミeェ゙ニッミロ こounニここ ミニミミミ
```


Refuse Collection Point
Abattoir

＿＿y yes＿／some ت゙es， \qquad
no－some 20. no

3．If no，Why？The reason is：
\qquad no odour emission at all large buffer distance between the receptor ventilate the odour to high position for dispersion it was totally enclosed

4．If there is odour problem in these piants，bave there any odour control equipment in these plants？

Refuse Collection Point	Abattoir
yes	
no	no

5．What kind of ocour control method is used in the RCP？And please indicare the total quantity used in RCP \＆Abattoir of Hong Kong．（You can tick more than one）

Troe：	Quantits：	
I scrubber，	R．C．P．	Abanoir
－activated carbon	R．C．P．	Abanoir
－bionller	R．C．P．	Abanorr
－electrostatic precipuator	R．C．P	Abamor
－incineration	R．C．P．	Abattor
E totally enclosed	R．C．P $\overline{\text { P }}$	Abattoir
－vent io high postron	R．C．P．	Acartor

E large buffer distance R.C.P. 2 Abatoir
I other, pls spec.fy \qquad in what quantity:
\qquad
\qquad in what quantity: \qquad
6. The reasons for those plants without equipping odour control equipment are: (You can tick more than one)
economic
low ocour emis ion
no sensitive receiver
no statutory requirement
others, please specify:
7. The reasons for those plants equipping with odour co...-ol equipment are: (You can tick more than one)

economic feasible	R.C.P.
high odour emission sensitive receiver exist statutory requirement othe - , please specify:	

8. How many numbers of the existing plants (with or without control measures) are planned to lower their odour emissions by incorporatingupgrading the odour control equipment?
R.C.P.
Abattoir
Quantity: \qquad Quantity: \qquad
9. How many new plants are planned to lower their odour emissions by incorporating the odour control equipment?
R.C.P.
Quantity: 10
Abattoir
Quantity: \qquad

10. Are there any legislation directly relared to the control of odour level inside/outside the concemed plants?

E yes, please give details: \qquad
Eno,
if no, is there any other reiated code of practice or general guidelines: \qquad

11. Any additional information: \qquad

is ens:-sect.
End
$2 / 2$

Questionnaire on the Deodorization of
 Refuse Collection Point \& Abattoir

To KWAN Yiu-keung
Fax No.: 24028275
From: $\quad \in$ Rem. Sri (m)
OrganisationDeparment: Recinem Semites

Fax No: 2602029? Tel: Eft?

1. How many Ref. .se Collection Point \& Abattoir are there in Hong Kong:

Refuse Collection Point, quantity: \qquad .
\qquad (3mReires, 2 ai Clares)
2. Will there be any odour problem in such plants?

Refuse Collection Point	
yes	Abattoir
no y os	

3. If no, Why? The reason is:

$\frac{v^{\prime}}{2}$
no odour emission at all
large buffer distance between the receptor ventilate the odour to high position for dispersion it was totally enclosed
4. If there is odour problem in these plants, have there any odour control equipment in these plants?

Refuse Collection Point yes	Abattoir: yo

5. What kind of odour control method is used in the RCP. And please indicate the total quantity used in RCP \& Abattoir of Hong Kong. Fou can tick more than one)

Quantity:
R.C.P. \qquad Abattoir \qquad R.C.P. \qquad Abattoir \qquad
R.C.P. \qquad Abattoir \qquad
R.C.P. Abattoir \qquad Abattoir \qquad Abattoir \qquad Abattoir \qquad page $1 / 2$
$\begin{array}{ll}\begin{array}{l}\text { large buffer distance } \\ \text { other, pis specif. }\end{array} & \text { R.C.P. } \\ \text { in what quantity }\end{array}$ Abattoir \qquad
\qquad in what quantity. \qquad
6 The reasons for those plants without equipping odour control equipment are (You can tick more than one)

economic low odour emission no sensitive receiver no statutory requirement others, please specify:	-	R.C.P.

7. The reasons for those plants equipping with odour control equipment are: (You can tick more than one)

economic feasible high odour emission sensitive receiver exist statutory requirement others, please specify:	R.C.P.

8. How many numbers of the existing plants (with or without control measures) are planned to lower their odour emissions by incorporatingitugrading the odour control equipment?
\qquad Abattoir Quantity: \qquad
9. How many new plants are planned to lower their odour emissions by incorporating the odour consol equipment?
R.C.P.
Quantity: \qquad
Abattoir Quantity: \qquad
10. Are there any legislation directly related to the control of odour level inside/outside the concerned plants?

- yes, please give details: \qquad
-no,
if no, is there any other related code of practice
or general guidelines: \qquad

Questionnaire on the Deodourzauon of
 Sewage Treatment Plant

To: KWAN Yiu-keung
Fax No 24028275
From: CSTSE, for Chief Engmeer/Newaye Teatenent, $D S D$ 59.29 OrganisawonDepartrient: DtuinateSemee teat Adritess. 43/5, Gloweesier Rd, tenches, ri K Fax No 25278619 Tel. 25447143

1 How many Sewage Treatment Plant are there in Hong Kong

$$
\text { Sewage Treatment Plan, quantity _over } 160 \text { of varas Type }
$$

2. Will there be any odour problem in such plant?
Yes (sone)
\ldots no
3. If no, Why? The reason is:
\qquad l. odour emission at all large buffer distance between the receptor
__ ventilate the odour to high position for dispersion
\qquad it was totally enclosed
4. If there is odour problem in these plants, have there any odour control equipment in these plants?
5. What kind of odour control method is used in the $S T P^{\prime}$ And please indicate the total quantity used in STP of Hong Kong. (You can usk more than one)

6. The reasons for those plants without equipping odour control equipment are: (You can tick more than one)

Eeconomic

- low odour emission

I no sensitive rect var
D no statutory requirement
I others, please specify: not provided in the original design
7. The reasons for those plants equipping with odour control equipment are:
(You can tick more than one)
Economic feasible

- high odour emission
- sensitive receiver exist

1 statutory requirement
I others, please specify: - For sone new ports, She equyponent is prided under
8. Inow many numbers of the existing plants (with or without control measures) are seduce tat planned to lower their odour emissions by incorporating/uperading the odour control hexed. equipment?

Quantity: \qquad (or in \qquad \%)

9. How many new plants are planned io lower their odour emissions by incorporating the odour control equipment?

Quantity: \qquad (or in $\%$) are being tilt by rater bose rect rec. Tr 10. Are there any legislation directly related to the control of odour level inside/outside the concomed plants?
yes, please give details: \qquad
I. no,
if no, is there any other related code of practice

Seers diver is mene, fut droid
check w. EPY and sher withoitiés. or general guidelines: \qquad

11. Any additional information: \qquad Her Kwan:

End

Questionnaire on the Deodorization of Water Treatment Plant

To: KWAN Y゙u-keung
Far No.: 24028275
From: Cherry Chemist
Organisation Department: whim Jughies bust.
Address: $48 / 5$ innoranion Tourer rankin.

1. How many Hater Treatment Plant are there in Hong Kong:

Water Treatment Plant, quantity: \qquad 18 -
2. Will there be any odour problem in such plant?
155
20
3. If no, Why? The reason is:
no odour emission at all
large buffer distance between the receptor ventilate the odour to high position for dispersion
___ it was totally enclosed
4. If there is odour problem in these plants, have there any odour control equipment in these plants?

5. What kind of odour control method is used in the WIP? And please indicate the total quantity used in $\begin{aligned} & \text { IP } \\ & \text { of Flong Kong. (You can tick more than one) }\end{aligned}$

6. The reasons for those plants without equipping odour control equipment are: (You can tick more than one)
J economic
Ilo odour emission
E no sensitvereceiver
O no statutory requirement
others, please specify.
7. The reasons for those plants equipping with odour control equipment are: (You can tick more than one)

8. How many numbers of the existing plants (with or without control measures) are fanned to lower their odour emissions by incorporangzupgrading the odour control equipment?
9. How many new plants are planned to lower their odour extensions by incorporating the odour control equipment?

Quantity: \qquad Cor in \qquad \%)
sue 3
10. Are there any legislation directly related to the control of odour level inside/outside the concerned plants?
\square yes, please give details:

no,

Appendix 8

1. Enceocstaidi
1.1 These rotes list the mirimin requiremats for negting the best puacticabie peans iur Rendering iorks as a byproiuc renciering plant at siaughter-ioise, in wint:-
(i) the proossix capacity expeeis 250 ky per hour (expresed as tie Inw naterais): and
(ii). zerdering or recintion or drixy throxit applicution of heat,
 bicoi, bore, hom, hoof, skin, ofial, feather etc.) is camied art.

The siaughtercouse nentionei above reiers to the place mitere anduais but exnuluing fisi ara burivered for food.
2.2 Thesa notes os not aver ofiher moosses inich are ilso defined as Rencering ficuics uder tie hir poliution Contwol ordizance.
1.3 It sincild be xod that in grantixg a icence under twe crinance,
 also consitar all otiver relevant 3spects and may impose more stringent andor additional contiol recuinemers by taking into zocunt indivicial procass characteristios, iocal ewormaty and air guailty and ary ocher factors.
2. ESSISIOR SEDNE
2.1 Cinteys inciude scictures and operixes of any xix, includix vents and prooss oxitaists, from or tronath which ain poliutants (incliding ocorus geses), gereratad f=a comision, ockix, dryixy axi/cr ctiver processes of the piant, tay be emitiod.
2.2 The design or chimeys is to be detarined by nathemetioai oz phyial dispersion nodellite tacinicues socepable to tio Aluncriti. The airs are to ersine :-
 inmetervec:
(b) the enissicn of nomponilitants, in particinar, beavy metals and carmingenic oryanic componds, will not cave any aciverse effect to mum realit or ervinumpre: and
(c) x unde conscraint will be incurred to the existixg and Atme developoent on land use.

2.3 In any case, the design of chimery shail at loast satisfy the following conditions :-

(a) Sonimev raictits

Fer onivisticn process, the firai chimery height should be agres with the ditinoritit but as a ferereil guidelire, the chimey height, in a llat terrain sitution, should as Ear as Fracicabir be at least suildix feiqut $+1.5 \times$ viildix riicth or 3iilding reight, wichever is the lesser. Suitabie adjustoent s. xid be pade to take into socount local netenological cata, lowl toperrathy and backerund air poivent concantitioss. In ary case, the minimen chimey heigtit shall be at least 3 petin above ground level or 3 vecres above the rof top of the building to wtich it is attached, thichever is the greater.

For nor-ambistion process, the sate guideline should be coserved as far as practicable and in ary case, the chiney heigtin siall be at least 3 neters above the mos iop of tio buiding to rhich it is atrachec.

The efliw veiocity of the cinimeys sinall not be less than is II/s at Sill load conditim.
(c) Xit yeperstive

For canision prooess, the exit temperature of five gas Nou the cintress stall not be ies fin the acid dex pirt.
(d) Vioce viscinase

Releases to ain finu chimeys shill be directed verticaily
 exaule, platas, cans or coris.
itera macticable, hot missions stould take place Aru the ninim muber of chineys and miltiplicity of discrange poir siouid be avoided, in arier to atain pexinn themai bicyarx

Gifey for release of hot eaissions sionid, wherever possin: bisivated. The irsiation nateriais shail be tree of asparios.

3. 2xScian -amis

3.1 All emissiors to air, otier than stean or water vaporn, shail be colozless and tree inn persistent iist, fun and trolets.
3.2 adorous enissicrs shall be adequataly controlled to ersure that the operation of the by－moxtet plant woild not ouse an odar ruisame or inpose unacoertable corstaint on land use．To satisty the aieve requrements，ail odorcus enissiors have to meet aporopriata eroission limits（in tems of cicur units）to be approved by the Althorivy．
（note ：an oblutinit is the measming uit of odour level ani anaicgus to pollttart concertichion．In this ortex，the Nour level is defined as the rexio of the volume mich the sample woid ∞ ocury when dinuted with air to the cavi＝ theestold，to the volume of the sample．In other wiris，ont odour unt is the ancertation of the ciorant mitu fist incicos an ciour sensation．

An odar muisanca exists is sampling result established dy an odom parel indicates that tix amienk coint levei at th． affected areas excoecs 2 orion units．）
3.3 Emissions Era Conbistion prooess shall be less than Rimelmarm shade

3.4 In zodition to the above Iequiraners，the emission litits stipulated below shail be apolicable to ail emissions during nomul operatiors inciuding load change．The introntion of dintion air to achieve the enission：limits is not pernitud．
（Ali figmes are anmed as at $0^{\circ} \mathrm{C}$＝emperature， 201.525 kilopascais prosime conditions withat arnection for water vanan cortent）

Aㄷ－20ivitants
Partiniates（ixciuting exissius
fion natariais and pronirs
danciliry operatiors）
Total of incrogen supinde，simitides
and pervaptans（exnnessed as
nytoren suntide）
Olcmize and ins～nuncis
（oxnessec as myingen concioise）
Amoria
Arines and anuies（expressect as anxaria）

80 上
$\operatorname{coschan}=\cos$
$50 \pi E m^{3}$
$8=\pi^{3}$
－
－ボース
$40 \pi x^{3}$
$4 \pi x^{3}$

4．1 All possible odorous samoes sinil be inily identified and investigated．Acequate ontul neasmes shail be implemeried to
ensure that the oceration of the bympixic plan would not cause an
 artirruxtis
4.2 For bividigsin ithict there are possinle viorous sources, trey siould
 building. Double doars Eoming an air iock should be used where aphopriate. The oinous air sinali efferively collected and ventec to a sui=able ciour antes equiprent.
 crivan witi the zw materials, semi-mocese-t or processec reterials
 ard siall be keft cien.
4.4 A goci house keening shail be naintiret. Sitabienethots sinali be provided for the effective cleaning of ary irea of spiliage ard for the effective clearixg of the plart. Solilages stail be cleared ip as soon as possible.

(a) Vataniais parsion
(i) Ean meterizis shouid be thanozed ircm the pint of procturion to the moossing plant as quickiy as practicicie. The design and use of renicles or containers shail be such as to minitize the enission of any oriensive ofor or soilizge of ary iiquid or soizd

(ii) Eutw vericies ard contairers siail be kepa ciear.
(iji) Raw natoriais sinail be zoocessed rot later than 24 hotrs. Javixg recari to ine age and froe of Isw materia!s ivolved, reviperation Eo the sworace anc

(iv) Raw materials siail be kexc dy and wi, ut oz inect sulicita and in a sully exiosed contirer or bindines.
 the winection, Farsfer and randing of Fav neariais ard wast sinai- be maciily cisamable, inuerriais an kep clean.
 minessad inside erciosed areas witil doitie docis witn
 shai be kez ciosed otien inan ※cr the noversen of натarials.
(vii) Mín air extrantion Fatss in the faw material yoception arsa sizall be mintained to vert the ocorous air to a siitable dian cuntul aundert.
(viis) within the nai rateriai handing and processing areas, adeciate regative pressur siall be maintained to prever the escape of oforms. Tariss or recertacies sor hoiding lievid wastas or usabie prosescible poctions shall eitur be in an area under acequate negative pressure or seale ard verted. All sich extuction shail be kixted to a suitable odour cortol equipont.
(b) inssing
(i) Areas ithere ary processing of animai matioss (including ilesi, blood, bore, hom, hoof, skin, offal, fegther etc.) is carried art shall be totally exciosed. The ventilation of the areas shail be venced to a suitaine cour control quipuent. Thesa arses sisili be filly weatherproof. D00rs shail be ciose-fitting and siali bo kept ciosed when prectionie, orber than for the noverer. of raveriais.
(ii) The cumeving syster for ine naterials baing processed axdor procints being monicod stail be leak-mone and soili-moos.
(c) processing enizunit
(i) For batch processes, wakes stall be ciarsed under a sufficiertly rewnod presure to prevent tie escape oE coorous air, or the ciarix aroa shall be hooded and $=2$ extactod air ventad to a sititable cion onneoi equipnert.
 ventad $t=$ a suitable odar corcoi equiphert. Souros o: odorces anissions whicur mist be consicered inciude wokers, mass, driers, cernisures, tariks, yars, crairers, naverials tansfor pins, leakig ducs axi glancs.
(d) Meal verossincer
 in-xed i: a marrer ntici croids soillace.
(e) Taildw 2000ssinc and Stange
(i) $A 11$ taniks for talion wosssing and/or storing shail be ídded, sealed or verted to a suitable ciaur arreol equipmant to prevent odor emissions. catwinert provisioss stall be porided to ontain spillage is ary.
(iii) Bux tinlow starage taris shall be ititoc with a higth-level alana or volume ixdicator to man of and therewy prevan crerinilig.

(i) The exicietry of ocan orizol ecuipment stail be at leas able to satissy the requirenpert as stipulateci in section 4.1 of these notes.
(ii) Where missions of dinfering cour intersity are pociu within the wrocess, the ocotr strans stould de kept separata and feated by an apmomiate oian contol equmert werever practicaila.
(iii) As a gererai guiceline, hig intensity odarss shouid $=$ treated by mitu pess or other chenical scurbers and those corrainixy ortan irconcennibie cases should de Feated by inaineramct. iesser intersity dours may verted to chanical scuboers, biological filters of similar suitabie cortorol equipment.
(iv) odu-resixy acers ax onteractans sinan mita as a reans of coan antiol.
 systen sbali ailorimersion of diar steans to orbe Suitale contol eruporn or cause intermition of t process.

(i) Liquid efigent wincin is rocinced $5 y$ the process
 randied and fratec so as to provent- Eve enission. of offersive odctrs sivu the effivart.
(ii) where conderser is isec for ins purose of hinimisicc cdans, :t mist ersins 2at the =ype of condersers be used or poposed is acmpable joti in relation to th quantio and quali=i of iqua dischares.

5. GNHETL GR OTOR Trunive zitssmas

5.i the control of the fuitive enissions of aim poivutans ctier tha: odar shail be aneed $\omega 1$ the drthorty. As a general guiciane loading, vicadux, handing and surace of fuel, num nateria's,

(a) visible dust emissiors: and/or
(b) suicrs of cryanic vapours; and/or
(c) Cuser noxious or ofersive umissicrs.

5.2 In partioular, the storage, twanporation and handing of disty raterials sum as bloot porder and grom neal shall be caried art methocs with do not give rise to visimie dist enissions.

6.1 Gasecus fuel is the recomenciec Alel to be used du the Aluhority in also accept the use of inguid tuel with the folioning specificationt :-

Suncrum cntert:	Not greatar tian $0.3 \hat{7}$ (L2y meight
Fiscostivy:	Hot crizater than 6 certistok: ($2 t 40 \mathrm{C}$)

7. MENTMRING KTOUREMEMCS

7.1 Janamesers and samoling magiergy will be deternined by the furionity. in gereral, visual and oifactory assessumis of emissio srall be made frexiently and at leas oxe a day.

3. SENETSSIGTHG

8.i Combissicnin tizis (to de witesses iy the Authoritilwhever

 catiletion of the tial.

9.1 Recuinements incixie not only the Fotision of the appisances, hut Foper copration and manterance of suipuen, is suerrision witer use and the tranim and sperrision of zroverly guibised siatt.
 ixtivetual equipuent.
 equprert mict woult cause exaevarce of the eutission limits of
 tive Altionivi witin 3 woving days.

Appendix 9

```
Environmental Technologies Center
Israel Export Institute
29 Hamered Street
P.O.Box }5008
Tel Aviv 61500,
Israel
Mr Itzhak Rozen, Director
BUNDESMMNISTERUM FUER UMWELT, JUGEND UND FAMMIE SEKTION 1
Ra 'zkystrasse 2
A-1 Wien/Austria
Ministerio del Medio Ambiente
Bogotá,
Colombia,
South America
INDERENA
Carter 10, \#20-30, Bogotá,
Colombia,
South America
```

Kathy Prosser
Commissioner
Department of Environmental Management
P O. Box 6015
Indianapolis, IN 46225
Indiana,
U.S.A.

Allan Stokes
Director
Environmental Protection Division
Department of Natural Resources
Wallace State Off. Bldg.,
Des Moines, LA 50319,
Iowa,
U.S.A.

Roland Harmes
Director
Department of Natural Resources
P.O. Box 30028

Lansing, MI 48909, Michigan, U.S.A.

Michael Sullivan

Executive Director
Environmental Quality Board
Office of Strategic \& Long Range Planning
658 Cedar Street, Ste. 300
St. Paul, MN 55155,
Minnesota,
U.S.A.

Environmental Protection Agency
401 M Street, S.W.
Washington, DC 20460,
U.S.A.

```
Tom Looby
Director
Office of Environment
Department of Health
4300 Cherry Creek Dr., S.
Denver, CO 80220
Colorado,
U.S.A.
```

Christophe A.G. Tulou
Secretary
Department of Natural Resources \& Environmental Control P.O. Box 1401

Dover, D.E. 19903, Delaware, U.S.A.

Virginia Wetherell
Secretary
Department of Environmental Protection
2600 Blairstone Road,
Twin Towers,
Tallahassee, FL 32399.
Florida,
U.S.A.

Mary Gade
Director
Environmental Protection Agency
2200 Churchill Road,
Springfield, II 62708
Illinois,
U.S.A.
L. Don Thurman
Associate Commissioner
Environment \& Conservation Health Protection
Dept. of Health1100 W. 49th St.,Austin, TX 78756
Texas
U.S A.
Dianne R. Nielson
Director
Div. of Environmental Health
P.O. Box 144810Sait Lake City, UT 84114
Utah
U.S.A.
Richard N. Burton
Director
Dept. of Environmental Quality
629 E. Main ${ }^{5}$ t.
Richmond, VA 23219
Virginia
U.S.A.
Macy Riveland
Director
Dept. of Ecology
P.O. Box 47600
Olympia, WA 98503
Washington
U.S.A.
Edward Z. Fox
Director
Dept. of Environmental Quality
3033 N. Central Ave.
Phoenix, AZ 85012
Arizona
U.S.A.
Jeanne Fox
Commissioner
Dept. of Environmental Protection
401 E. State St., CN402
Trenton, NJ 08625
New Jersey
U.S.A.
Judith Espinosa
Secretary
Dept. of Environment
P.O. Box 26110
Santa Fe, MM 87502
New Mexico
U.S.A.
Thomas C. Jorling
Commissioner
Dept. of Environmental Conservation 50 Wolf Road,

 Albany, NY 12233

 New Yocle

 U.S.A.Donald R. Schregardus
 Director
Environmental Protection Agency
P.O. Box 1049
Columbus, OH 43266
Ohio
U.S.A.
Gregg Robertson
Field Operations Deputy
Dept. of Environmental Resources
P.O. Box 2063Harrisburg, PA 17105
Pennsylvania
U.S.A.
Environmental Protection Department
P.O.Box 8013 DEP,
0030 Oslo
Norway
Environment Ministry for The Head Office
The Grand Annex Building,
84 Boulcott Street,
P.O.Box 10-362 THTCE
Directorate-General Environment Management
Ministry of Housing, Spatial Planning and the Environment
P.O.Box 30945
2500 GY's - Gravenhage
Department for Social Integration, Public Health and Environment
General Secretary
Rijkasadministratief Centrum
Esplanadegebouw
1010 Brussel
Ympänistöministeriö
Ratakatn 3
00120 Helsinki
Finland
Miljö-och Naturresursdepartementet
Tegelbacken 2
Stockholm
Sweden
Ministry of the Environment
2 Kaplan Street
Kiryat Ben-Gurion P.O. Box 6158
Jerusalem 91061,
Israe!

Lake Michigan Air Directors Consortium, 2350 East Devon Avenue, Suite 242, Des Plaines, Illinios, U.S.A.
National Institute of Environmental Studies Tsukuba, Ibaraki 305, Japan
Republic of China's Environment Protection Administration 41 Sec. 1 Chung-Hwa Road, Taipei,
Taiwan
Environmental Impact Evaluation Division
Office of Environmental Policy and Planning, 60/1 Soi Pibulwatana 7, Rama VI Road, Bangkok 10400,
Thailand

Air Pollution Control / Environmental Impact Assessment Department, Ministry of the Environment,
Environment Building 40, Scotts Road, \#11-00,
Singapore 0922,
Republic of Singapore
Agence de l'Environment et de la
Maitrise de l Energie
27, Rue Louis Vicat
75737 Paris CEDEX 15 ,
France

Direction de l'Eau de la Prévention des Risques
14, Boulevard du Général Leclerc, 92524 Neuilly Sur Seine, France

Institut National de l'Environment Industriel
9, rue de Rocray,
75010 Paris,
France
Ministry of Urban Development \& Environment
Av Constituyentes No.947, Edificio B,
Plenta Alta,
Col. Belen de Las Flores 01116,Mexico, D.F.
National Agency of Environmental Protection
Air Pollution Laboratory,
Ris National Laboratory,
D:' 1000 Roskilde,
Denmark
Federal Environemntal Agency
Umweltbundesamt,
Bismarckplatz 1
D-1000 Berlin 33
Germany
Council of Experts in Environmental Matters
Der Rat von Sachverständigen fur Umweltfragen
Gustay Stresemann Ring 11
D-6200 Wiesbaden
Germany
Federal Ministry for Research and Technology
Bundesministerium fur Forschung und Technologie
HeinemannstraBe 2
D-5300 Bonn 2
Germany
Ontario Ministry of the Environmental and Energy
125 Resources Road, East Wing, Toronto, Ontario,Canada
Atmospheric Environment Service,
4905 Dufferin Street, Toronto, Ontario,
Canada
Massachusett Department of Enviornmental Protection,10/F., The Corner, Downtown Boston,U.S.A.
California Environmental Protection Agency
Air Resources Board
Box 2815
Sacramento
CA. 95812

Assistant Secretary for Conservation \& Renewable Energy Washington DC 20585
J. Michael Davis, Assistant Secretary

Executive Office of the President
Council on Environmental Quality
Washington, DC 20500

Energy Information Administration
Office of Coal, Nuclear, Electric, and Alternate Fueis
Electric Power Division
Mail Stop EI-54
1000 Independence Avenue, S.W.
Washington, DC 20585
Mary J. Hutzler, Director

Ministry of Science Technology \& Environment
14/F., Wifma Sime Barby, Jalan Raja Laud 50662
Kualalumbur,
Malaysia
Philippines Council for Agricuitural, Forestry and
Natural Resources Research \& Development
Los Banof, Laguna,
Philippines
Environmental Protection Authority
Westralia Square Building, 38 Mountsbay Road
Perth City WA 6000
Australia

[^0]: Foroozan Labib, PhD, P.E. Water Quality Program

